Two-dimensional (2D) Janus materials have attracted significant attention due to their asymmetrical structures and unique electronic properties. In this work, by using the first-principles calculation based on density functional theory, we systematically investigate the electronic properties of 6 types of Janus-GaGraphene van der Waals heterostructures (vdWHs). The results show that the Janus-GaGraphene vdWHs are connected by weak interlayer vdW forces and can form n-type Schottky contact, p-type Schottky contact or Ohmic contact when the spin-orbit coupling (SOC) is not considered. However, when considering SOC, only the SeGa2S/G and G/SeGa2S vdWHs show n-type Schottky contact, and other vdWHs show Ohmic contacts. In addition, the Schottky barriers and contact types of SeGaS/Graphene and Graphene/SeGaS vdWHs can be effectively modulated by interlayer distance and biaxial strain. They can be transformed from intrinsic n-type Schottky contact to p-type Schottky contact when the interlayer distances are smaller than 2.65 Å and 2.90 Å, respectively. They can also be transformed to Ohmic contact by applying external biaxial strain. Our work can provide useful guidelines for designing Schottky nanodiodes, field effect transistors or other low-resistance nanodevices based on the 2D vdWHs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac800d | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Information Science and Technology, Fudan University, Shanghai 200433, China.
To date, various kinds of memristors have been proposed as artificial neurons and synapses for neuromorphic computing to overcome the so-called von Neumann bottleneck in conventional computing architectures. However, related working principles are mostly ascribed to randomly distributed conductive filaments or traps, which usually lead to high stochasticity and poor uniformity. In this work, a heterostructure with a two-dimensional WS monolayer and a ferroelectric PZT film were demonstrated for memristors and artificial synapses, triggered by in-plane ferroelectric polarization.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia.
Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
Multilayer thin films composed of dielectric BaCaZrTiO (BCZT) and oxygen-deficient BCZT (BCZT-OD) were fabricated on (001)-oriented NSTO substrates using the pulsed laser deposition (PLD) technique. Unlike conventional approaches to energy storage capacitors, which primarily focus on compositional or structural modifications, this study explored the influence of the layer sequence and periodicity. The interface between the NSTO substrate and the BCZT-OD layer forms a Schottky barrier, resulting in electric field redistribution across the sublayers of the BCZT/BCZT-OD//(1P) thin film.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China.
Heterojunctions (HJs) based on two-dimensional (2D) transition metal dichalcogenides are considered promising candidates for next-generation electronic and optoelectronic devices. Here, vertical (V-type) and lateral (L-type) HJ diodes based on metallic 1T-VSe and semiconducting 2H-WSe with out-of-plane and in-plane contacts are designed. First-principles quantum transport simulations reveal that both V- and L-type VSe/WSe HJ diodes form p-type Schottky contacts.
View Article and Find Full Text PDFNano Lett
January 2025
Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China.
GaO Schottky photodiodes are being actively explored for solar-blind ultraviolet (SBUV) detection, owing to the fast photoresponse and easy fabrication. However, their performance, limited by the Schottky contact, mostly underperforms the expectations. Herein, a Ni/β-GaO vertical Schottky barrier diode (SBD) with an ultrathin anode electrode is demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!