Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Over the past few decades, data-driven machine learning (ML) has distinguished itself from hypothesis-driven studies and has recently received much attention in environmental toxicology. However, the use of ML in environmental toxicology remains in the early stages, with knowledge gaps, technical bottlenecks in data quality, high-dimensional/heterogeneous/small-sample data analysis and model interpretability, and a lack of an in-depth understanding of environmental toxicology. Given the above problems, we review the recent progress in the literature and highlight state-of-the-art toxicological studies using ML (such as learning and predicting toxicity in complicated biosystems and multiple-factor environmental scenarios of long-term and large-scale pollution). Beyond predicting simple biological endpoints by integrating untargeted omics and adverse outcome pathways, ML development should focus on revealing toxicological mechanisms. The integration of data-driven ML with other methods (e.g., omics analysis and adverse outcome pathway frameworks) endows ML with widely promising application in revealing toxicological mechanisms. High-quality databases and interpretable algorithms are urgently needed for toxicology and environmental science. Addressing the core issues and future challenges for ML in this review may narrow the knowledge gap between environmental toxicity and computational science and facilitate the control of environmental risk in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129487 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!