The behavior and toxicity of nanoparticles could be affected significantly by the ubiquitous natural organic matter (NOM) in aquatic environments. However, the influence of NOM on nanoparticles along the food chain remains largely unknown. This study constructed bacteria Escherichia coli (E. coli) - protozoa Tetrahymena thermophila (T. thermophila) to evaluate the influence of NOM on the bioaccumulation, trophic transfer and toxicity of silver nanoparticles (Ag NPs). Results demonstrated that NOM could reduce the toxicity of Ag NPs to E. coli and T. thermophila by different influence mechanisms (e.g., reduce Ag NPs accumulation or complex with dissolved silver ion (Ag)) which related to the type of NOM and organisms. Moreover, Ag NPs can be transferred and biomagnified to T. thermophila via trophic transfer. Three typical NOM could significantly increase the trophic transfer factors of Ag NPs ranging from 1.16 to 2.49, which may be ascribed to NOM reducing the capacity for T. thermophila to excrete total silver (Ag) as NOM could significantly change the form of Ag. These findings provide a novel insight into the impact of NOM on the ecological risk posed by Ag NPs through the food chain and emphasize the need to understand further the interactions between nanoparticles and NOM in various ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129521 | DOI Listing |
Environ Pollut
January 2025
Department F.-A. Forel for Environmental and Aquatic Sciences, Section Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland. Electronic address:
Silver nanoparticles (AgNPs) are increasingly used in various consumer products and industrial applications, raising concerns about their environmental impact on aquatic ecosystems. This study investigated the physicochemical stability, trophic transfer, and toxic effects of citrate-coated AgNPs in a freshwater food chain including the diatom Cyclotella meneghiniana and the gastropod Lymnaea stagnalis. AgNPs remained stable in the exposure medium, with a minimal dissolution (<0.
View Article and Find Full Text PDFSci Total Environ
January 2025
Universidade Federal do Pará, Programa de Pós-Graduação em Geologia e Geoquímica, Rua Augusto Corrêa, 1, Campus Guamá, PA 66075-110 Belém, Pará, Brazil.
The knowledge of metals concentration in upwelling areas are a concern due the higher productivity of these areas In Cabo Frio Upwelling-Downwelling System (CFUS) is high primary productivity area and has been identified as an Hg hotspot to biota in SE Brazil that has been susceptible to Hg inputs, due to growing industrialization in the region. To investigate the concentration of Hg and Se metals, as well as the trophic transfer of these metals, the present study investigated Hg and Se concentrations in 64 samples collected in net mesh of >20, >64, >150 and >300 μm, in 2012, in the region's water masses. Higher mean Hg concentrations were found in zooplankton, 0.
View Article and Find Full Text PDFTrends Plant Sci
December 2024
State Key Laboratory of Plant Diversity and Specialty Crops, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China. Electronic address:
Micro/nanoplastics (MNPs) contamination is a potential threat to global biodiversity and ecosystem functions, with unclear ecological impacts on aboveground (AG) and belowground (BG) food webs in terrestrial ecosystems. Here, we discuss the uptake, ingestion, bioaccumulation, and ecotoxicological effects of MNPs in plants and associated AG-BG biota at various trophic levels. We propose key pathways for MNPs transfer between the AG-BG food webs and elaborate their impact on terrestrial ecosystem multifunctionality.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Growing demand and usage of rare earth elements (REEs) lead to significant pollution in wildlife, but trophic transfer of REEs in different food webs has not been well understood. In the present study, bioaccumulation and food web transfer of 16 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and Sc) were investigated in different terrestrial and aquatic species. Median concentrations of REEs in plant, invertebrate, fish, amphibian, reptile, bird, and vole samples were 488-6030, 296-2320, 123-598, 17.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Biology (DBI), State University of Maringá, Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Graduate Program in Ecology of Inland Water Ecosystems (PEA), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Nucleus of Limnology, Ictiology and Aquaculture (NUPELIA) of State University of Maringá (UEM). Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil; Graduate Program Comparate Biology (PGB), State University of Maringá (UEM), Av. Colombo, 5790 - Zona 7, Maringá, PR 87020-900, Brazil.
Floodplains function as global hotspots for the natural production of methane. Some of this methane can be oxidized by methanotrophic bacteria and assimilated into their biomass before reaching the atmosphere. Consequently, aquatic invertebrates that feed on methanotrophic bacteria may transfer methane-derived carbon to higher trophic levels in the aquatic food chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!