The large library of organic dye molecules offers almost infinite possibilities for laser design, but still faces a great challenge in achieving pure dye aggregate lasers due to intermolecular quenching. Here, we report a kinetically controlled molecular self-assembly strategy to synthesize unconventional dye microcrystals for lasing. By increasing temperature, the dye self-assembly is transformed from thermodynamic to kinetic control. Unlike the thermodynamic microcrystal products incapable of lasing due to intermolecular charge-transfer-mediated excimer formation, the kinetic dye microcrystals have large intermolecular distances and weak intermolecular interactions, supporting highly efficient intramolecular charge-transfer monomer emission and low-threshold lasing. This work demonstrates single-crystal dye lasers, promising to unleash the full potential of laser dyes in solid-state lasers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c03385DOI Listing

Publication Analysis

Top Keywords

single-crystal dye
8
dye lasers
8
dye microcrystals
8
dye
7
realization single-crystal
4
lasers
4
lasers taming
4
taming charge
4
charge transfer
4
transfer molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!