Gold nanoclusters (AuNCs) are atomic architectures that can be precisely tailored for catalytic applications. In this work, we studied two benchmark AuNCs, Au(SR) and Au(SR), covered by aromatic and aliphatic ligands to envision how the 3D structure of the ligand impacts the stability of the nanomaterial. Surprisingly, we found that increasing the alkanethiol length has a poor or null effect on the stability of the AuNCs, a trend opposite to that on Au(111) surfaces. When considering the aromatic or aliphatic nature, the AuNC stability follows the same trend as on Au(111): the thermodynamical stability is dictated by the ligand density rather than its chemical nature, where the aliphatic ligand imparts more stability than the aromatic one. Our findings provide a tool to predict how an ultrasmall gold core can interact with the environment, substrate, and themselves according to the stability of its protecting ligand shell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.2c01616 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!