β-1,3-Glucan synthases play key roles in glucan synthesis, cell wall assembly, and growth of fungi. However, their multi-transmembrane domains (over 14 TMHs) and large molecular masses (over 100 kDa) significantly hamper understanding of their catalytic characteristics and mechanisms. In the present study, the 5841-bp gene encoding the 221.7 kDa membrane-bound β-1,3-glucan synthase CMGLS in was cloned, identified, and structurally analyzed. CMGLS was partially purified with a specific activity of 87.72 pmol/min/μg, a purification fold of 121, and a yield of 10.16% using a product-entrapment purification method. CMGLS showed a strict specificity to UDP-glucose with a value of 84.28 μM at pH 7.0 and synthesized β-1,3-glucan with a maximum degree of polymerization (DP) of 70. With the assistance of AlphaFold and molecular docking, the 3D structure of CMGLS and its binding features with substrate UDP-glucose were proposed for the first time to our knowledge. UDP-glucose potentially bound to at least 11 residues hydrogen bonds, π-stacking ,and salt bridges, and Arg 1436 was predicted as a key residue directly interacting with the moieties of glucose, phosphate, and the ribose ring on UDP-glucose. These findings would open an avenue to recognize and understand the glucan synthesis process and catalytic mechanism of β-1,3-glucan synthases in mushrooms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.2c03410 | DOI Listing |
J Agric Food Chem
December 2024
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are important polyunsaturated fatty acids (PUFAs) used as nutritional supplements. The natural EPA content in sp. is low, and traditional strategies to increase EPA levels often compromise DHA content or lipid accumulation, hindering industrial coproduction.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
School of Medical Technology, Chongqing Three Gorges Medical College, Chongqing, China.
The most damaging disease affecting citrus globally is Huanglongbing (HLB), primarily attributed to the infection by ' asiaticus' (Las). Based on comparative transcriptome data, two cellulose synthase (CESA) genes responsive to Las infection induction were screened, and one gene cloned with higher differential expression level was selected and named . we verified the interaction between CsCESA1 and citrus exopolysaccharide 2 (CsEPS2) proteins.
View Article and Find Full Text PDFAnal Sci
December 2024
School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
A biosensor for biochemical oxygen demand (BOD) was developed based on intracellular 5'-adenosine triphosphate (ATP) measurements in Saccharomyces cerevisiae. Intracellular ATP was measured using an engineered protein named ATeam, comprising a bacterial FF-ATP synthase ε subunit sandwiched between cyan fluorescent protein and mVenus, a modified yellow fluorescent protein. Because the binding of ATP to ATeam induces changes in the fluorescence spectra owing to Fӧrster resonance energy transfer, S.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
TU Dresden: Technische Universitat Dresden, Faculty of Chemistry and Food Chemistry, Bergstraße 66, 01069, Dresden, GERMANY.
Polycyclic tetramate macrolactams (PoTeMs) represent a growing class of bioactive natural products that are derived from a common tetramate polyene precursor, lysobacterene A, produced by an unusual bacterial iterative polyketide synthase (PKS) / non-ribosomal peptide synthetase (NRPS). The structural and functional diversity of PoTeMs is biosynthetically elaborated from lysobacterene A by pathway-specific cyclizing and modifying enzymes. This results in diverse core structure decoration and cyclization patterns.
View Article and Find Full Text PDFChembiochem
December 2024
University of California Los Angeles, Dept. of Chemical And Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, 90095, Los Angeles, UNITED STATES OF AMERICA.
While sugar-containing natural products are commonly biosynthesized via glycosyltranferases using sugar-UDP as the electrophile, nature has evolved alternative strategies of glyco-modification to expand the diversity of natural products. Hydroxyl groups on sugars can serve as nucleophiles in the release of polyketide products from polyketide synthases. Herein, we demonstrate a highly reducing polyketide synthase (HRPKS) from the biocontrol fungus Trichoderma afroharzianum T22, which is terminated with a carnitine acyltransferase (cAT) domain, catalyzes the biosynthesis of a d-galactose esterified polyketide named as trichogalactin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!