Background: A cancer diagnosis is a source of psychological and emotional stress, which are often maintained for sustained periods of time that may lead to depressive disorders. Depression is one of the most common psychological conditions in patients with cancer. According to the Global Cancer Observatory, breast and colorectal cancers are the most prevalent cancers in both sexes and across all age groups in Spain.

Objective: This study aimed to compare the prevalence of depression in patients before and after the diagnosis of breast or colorectal cancer, as well as to assess the usefulness of the analysis of free-text clinical notes in 2 languages (Spanish or Catalan) for detecting depression in combination with encoded diagnoses.

Methods: We carried out an analysis of the electronic health records from a general hospital by considering the different sources of clinical information related to depression in patients with breast and colorectal cancer. This analysis included ICD-9-CM (International Classification of Diseases, Ninth Revision, Clinical Modification) diagnosis codes and unstructured information extracted by mining free-text clinical notes via natural language processing tools based on Systematized Nomenclature of Medicine Clinical Terms that mentions symptoms and drugs used for the treatment of depression.

Results: We observed that the percentage of patients diagnosed with depressive disorders significantly increased after cancer diagnosis in the 2 types of cancer considered-breast and colorectal cancers. We managed to identify a higher number of patients with depression by mining free-text clinical notes than the group selected exclusively on ICD-9-CM codes, increasing the number of patients diagnosed with depression by 34.8% (441/1269). In addition, the number of patients with depression who received chemotherapy was higher than those who did not receive this treatment, with significant differences (P<.001).

Conclusions: This study provides new clinical evidence of the depression-cancer comorbidity and supports the use of natural language processing for extracting and analyzing free-text clinical notes from electronic health records, contributing to the identification of additional clinical data that complements those provided by coded data to improve the management of these patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9315897PMC
http://dx.doi.org/10.2196/39003DOI Listing

Publication Analysis

Top Keywords

free-text clinical
16
clinical notes
16
mining free-text
12
breast colorectal
12
number patients
12
cancer
8
depression
8
electronic health
8
health records
8
cancer diagnosis
8

Similar Publications

Use of ChatGPT Large Language Models to Extract Details of Recommendations for Additional Imaging From Free-Text Impressions of Radiology Reports.

AJR Am J Roentgenol

January 2025

Center for Evidence-Based Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 1620 Tremont Street, Boston, MA 02120 Phone: 617-525-9702.

Automated extraction of actionable details of recommendations for additional imaging (RAIs) from radiology reports could facilitate tracking and timely completion of clinically necessary RAIs and thereby potentially reduce diagnostic delays. To assess the performance of large-language models (LLMs) in extracting actionable details of RAIs from radiology reports. This retrospective single-center study evaluated reports of diagnostic radiology examinations performed across modalities and care settings within five subspecialties (abdominal imaging, musculoskeletal imaging, neuroradiology, nuclear medicine, thoracic imaging) in August 2023.

View Article and Find Full Text PDF

Determining safety, usability, acceptability and potential for clinical use of an innovative walking frame design with in- and community patients.

Disabil Rehabil Assist Technol

January 2025

Centre for Human Movement and Rehabilitation, School of Health & Society, University of Salford, Salford, Greater Manchester, UK.

Purpose: Falls cost the NHS over £2 billion a year, with incidence increasing rapidly with age. Design of indoor walking frames remains limited, often needing to be lifted and not supporting sit-to-stand and turning manoeuvres, which can lead to falling. This study explored aspects of safety and satisfaction and potential for clinical use of a novel prototype walking frame.

View Article and Find Full Text PDF

Background And Aims: Patient-reported outcomes (PROs) are vital in assessing disease activity and treatment outcomes in inflammatory bowel disease (IBD). However, manual extraction of these PROs from the free-text of clinical notes is burdensome. We aimed to improve data curation from free-text information in the electronic health record, making it more available for research and quality improvement.

View Article and Find Full Text PDF

Introduction: Magnetic resonance imaging (MRI) has revolutionized our capacity to examine brain alterations in traumatic brain injury (TBI). However, little is known about the level of implementation of MRI techniques in clinical practice in TBI and associated obstacles.

Methods: A diverse set of health professionals completed 19 multiple choice and free text survey questions.

View Article and Find Full Text PDF

Scalable information extraction from free text electronic health records using large language models.

BMC Med Res Methodol

January 2025

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 1620 Tremont Street, Suite 3030-R, Boston, MA, 02120, USA.

Background: A vast amount of potentially useful information such as description of patient symptoms, family, and social history is recorded as free-text notes in electronic health records (EHRs) but is difficult to reliably extract at scale, limiting their utility in research. This study aims to assess whether an "out of the box" implementation of open-source large language models (LLMs) without any fine-tuning can accurately extract social determinants of health (SDoH) data from free-text clinical notes.

Methods: We conducted a cross-sectional study using EHR data from the Mass General Brigham (MGB) system, analyzing free-text notes for SDoH information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!