Duplex ultrasound for diagnosing symptomatic carotid stenosis in the extracranial segments.

Cochrane Database Syst Rev

Department of Surgery, Division of Vascular and Endovascular Surgery, Universidade Federal de São Paulo, São Paulo, Brazil.

Published: July 2022

Background: Carotid artery stenosis is an important cause of stroke and transient ischemic attack. Correctly and rapidly identifying patients with symptomatic carotid artery stenosis is essential for adequate treatment with early cerebral revascularization. Doubts about the diagnostic value regarding the accuracy of duplex ultrasound (DUS) and the possibility of using DUS as the single diagnostic test before carotid revascularization are still debated.

Objectives: To estimate the accuracy of DUS in individuals with symptomatic carotid stenosis verified by either digital subtraction angiography (DSA), computed tomography angiography (CTA), or magnetic resonance angiography (MRA).

Search Methods: We searched CRDTAS, CENTRAL, MEDLINE (Ovid), Embase (Ovid), ISI Web of Science, HTA, DARE, and LILACS up to 15 February 2021. We handsearched the reference lists of all included studies and other relevant publications and contacted experts in the field to identify additional studies or unpublished data.

Selection Criteria: We included studies assessing DUS accuracy against an acceptable reference standard (DSA, MRA, or CTA) in symptomatic patients. We considered the classification of carotid stenosis with DUS defined with validated duplex velocity criteria, and the NASCET criteria for carotid stenosis measures on DSA, MRA, and CTA. We excluded studies that included < 70% of symptomatic patients; the time between the index test and the reference standard was longer than four weeks or not described, or that presented no objective criteria to estimate carotid stenosis.

Data Collection And Analysis: The review authors independently screened articles, extracted data, and assessed the risk of bias and applicability concerns using the QUADAS-2 domain list. We extracted data with an effort to complete a 2 × 2 table (true positives, true negatives, false positives, and false negatives) for each of the different categories of carotid stenosis and reference standards. We produced forest plots and summary receiver operating characteristic (ROC) plots to summarize the data. Where meta-analysis was possible, we used a bivariate meta-analysis model.

Main Results: We identified 25,087 unique studies, of which 22 were deemed eligible for inclusion (4957 carotid arteries). The risk of bias varied considerably across the studies, and studies were generally of moderate to low quality. We narratively described the results without meta-analysis in seven studies in which the criteria used to determine stenosis were too different from the duplex velocity criteria proposed in our protocol or studies that provided insufficient data to complete a 2 × 2 table for at least in one category of stenosis. Nine studies (2770 carotid arteries) presented DUS versus DSA results for 70% to 99% carotid artery stenosis, and two (685 carotid arteries) presented results from DUS versus CTA in this category. Seven studies presented results for occlusion with DSA as the reference standard and three with CTA as the reference standard. Five studies compared DUS versus DSA for 50% to 99% carotid artery stenosis. Only one study presented results from 50% to 69% carotid artery stenosis. For DUS versus DSA, for < 50% carotid artery stenosis, the summary sensitivity was 0.63 (95% confidence interval [CI] 0.48 to 0.76) and the summary specificity was 0.99 (95% CI 0.96 to 0.99); for the 50% to 69% range, only one study was included and meta-analysis not performed; for the 50% to 99% range, the summary sensitivity was 0.97 (95% CI 0.95 to 0.98) and the summary specificity was 0.70 (95% CI 0.67 to 0.73); for the 70% to 99% range, the summary sensitivity was 0.85 (95% CI 0.77 to 0.91) and the summary specificity was 0.98 (95% CI 0.74 to 0.90); for occlusion, the summary sensitivity was 0.91 (95% CI 0.81 to 0.97) and the summary specificity was 0.95 (95% CI 0.76 to 0.99). For sensitivity analyses, excluding studies in which participants were selected based on the presence of occlusion on DUS had an impact on specificity: 0.98 (95% CI 0.97 to 0.99). For DUS versus CTA, we found two studies in the range of 70% to 99%; the sensitivity varied from 0.57 to 0.94 and the specificity varied from 0.87 to 0.98. For occlusion, the summary sensitivity was 0.95 (95% CI 0.80 to 0.99) and the summary specificity was 0.91 (95% CI 0.09 to 0.99). For DUS versus MRA, there was one study with results for 50% to 99% carotid artery stenosis, with a sensitivity of 0.88 (95% CI 0.70 to 0.98) and specificity of 0.60 (95% CI 0.15 to 0.95); in the 70% to 99% range, two studies were included, with sensitivity that varied from 0.54 to 0.99 and specificity that varied from 0.78 to 0.89. We could perform only a few of the proposed sensitivity analyses because of the small number of studies included.

Authors' Conclusions: This review provides evidence that the diagnostic accuracy of DUS is high, especially at discriminating between the presence or absence of significant carotid artery stenosis (< 50% or 50% to 99%). This evidence, plus its less invasive nature, supports the early use of DUS for the detection of carotid artery stenosis. The accuracy for 70% to 99% carotid artery stenosis and occlusion is high. Clinicians should exercise caution when using DUS as the single preoperative diagnostic method, and the limitations should be considered. There was little evidence of the accuracy of DUS when compared with CTA or MRA. The results of this review should be interpreted with caution because they are based on studies of low methodological quality, mainly due to the patient selection method. Methodological problems in participant inclusion criteria from the studies discussed above apparently influenced an overestimated estimate of prevalence values. Most of the studies included failed to precisely describe inclusion criteria and previous testing. Future diagnostic accuracy studies should include direct comparisons of the various modalities of diagnostic tests (mainly DUS, CTA, and MRA) for carotid artery stenosis since DSA is no longer considered to be the best method for diagnosing carotid stenosis and less invasive tests are now used as reference standards in clinical practice. Also, for future studies, the participant inclusion criteria require careful attention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272405PMC
http://dx.doi.org/10.1002/14651858.CD013172.pub2DOI Listing

Publication Analysis

Top Keywords

carotid artery
44
artery stenosis
44
carotid stenosis
24
dus versus
24
carotid
22
studies
21
70% 99%
20
summary sensitivity
20
summary specificity
20
stenosis
19

Similar Publications

Fluid administration is widely used to treat hypotension in patients undergoing veno-venous extracorporeal membrane oxygenation (VV-ECMO). However, excessive fluid administration may lead to fluid overload can aggravate acute respiratory distress syndrome (ARDS) and increase patient mortality, predicting fluid responsiveness is of great significance for VV-ECMO patients. This prospective single-center study was conducted in a medical intensive care unit (ICU) and finally included 51 VV-ECMO patients with ARDS in the prone position (PP).

View Article and Find Full Text PDF

Background: Flow diverters (FDs) have been introduced for the management of large or giant cavernous carotid aneurysms (CCAs) in addition to conventional modalities, dramatically changing treatment strategies. The aim of this study was to examine the management of unruptured large/giant CCAs in Japan when FDs were being introduced using a nationwide survey.

Methods: 540 unruptured large/giant CCAs treated at neurosurgical teaching departments in Japan between 2012 and 2016 were retrospectively studied.

View Article and Find Full Text PDF

Purpose: This study aims to investigate the indications and therapeutic efficacy of flow-diverting stents (FDSs) in the management of extracranial carotid artery aneurysms (ECAAs) and dissections.

Methods: A retrospective analysis was conducted on 18 patients treated for ECAAs with an FDS between 2010 and 2024. Patient demographics, aneurysm characteristics, procedural details, and clinical and radiologic follow-up outcomes were extracted from medical records.

View Article and Find Full Text PDF

Exercise has a significant impact on the cardiovascular (CV) health of children and adolescents, with resultant alterations in CV structure and function being evident, even at an early age. Engagement in regular, moderate physical activity (PA) is associated with long-term CV health benefits and a reduced risk of CV disease and mortality later in life. However, competitive sports often involve PA training intensities that are beyond recommended levels for young athletes, potentially leading to adverse CV outcomes.

View Article and Find Full Text PDF

Transcarotid artery revascularization (TCAR) is a novel method to treat severe stenosis of the carotid artery with minimal embolization. During TCAR, flow reversal system redirects blood from the internal, external, and common carotid arteries into the femoral vein through a filter system to prevent debris and microparticles from entering the cerebral circulation. Transcranial Doppler (TCD) monitoring allows real-time detection of blood flow in the cerebral arteries during the operation and informs the surgeon of flow changes or possible emboli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!