: The study aimed to highlight the possible role of ciliary neurotrophic factor (CNTF) in the pathophysiology of attention deficit hyperactivity disorder (ADHD) and determine whether CNTF can be used as a biomarker for ADHD.: Patients with a diagnosis of ADHD and neurotypical subjects aged 6-12 years were recruited prospectively. The study applied Conners' Teacher Rating Scale (CTRS) to determine the patients' ADHD predominance and severity. Serum CNTF levels were measured with an enzyme-linked immunosorbent assay (ELISA) kit. A total of 43 ADHD patients and 33 healthy controls were included in the study. A significant difference was found between the serum CNTF levels of the ADHD patients (22.17 pg/ml) and the controls (22.80 pg/ml). Correlations between the CNTF levels and CTRS scores were not significant. The study identified an alteration of serum CNTF levels in ADHD patients and thus asserted a link between CNTF and ADHD pathophysiology; children with ADHD had significantly lower serum CNTF levels compared to the neurotypical controls. Further research is needed to understand the mechanisms of CNTF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00207454.2022.2100782 | DOI Listing |
Research on serotonin reveals a lack of consensus regarding its role in brain volume, especially concerning biomarkers linked to neurogenesis and neuroplasticity, such as ciliary neurotrophic factor (CNTF), fibroblast growth factor 4 (FGF-4), bone morphogenetic protein 6 (BMP-6), and matrix metalloproteinase-1 (MMP-1) in Alzheimer's disease (AD). This study aimed to investigate the influence of serotonin on brain structure and hippocampal volumes in relation to cognitive functions in AD, as well as its link with biomarkers like CNTF, FGF-4, BMP-6, and MMP-1. Data from 133 ADNI participants with AD included cognitive assessments (CDR-SB), serotonin measurements (Biocrates AbsoluteIDQ p180 kit, UPLC-MS/MS), and neurotrophic factors quantified via multiplex proteomics.
View Article and Find Full Text PDFFront Immunol
November 2024
Division of Gastrointestinal Pathophysiology, University of Toyama, Toyama, Japan.
It has recently become clear that the gut microbiota influence intestinal motility, intestinal barrier function, and mucosal immune function; therefore, the gut microbiota are deeply involved in the maintenance of intestinal homeostasis. The effects of the gut microbiota on the enteric nervous system (ENS) in the adult intestine, however, remain poorly understood. In the current study, we investigated the effects of the gut microbiota on the ENS.
View Article and Find Full Text PDFTraumatic optic neuropathies cause the death of retinal ganglion cells (RGCs) and axon degeneration. This is a result of the blockage of neurotrophic factor (NTF) supply from the brain and a vicious cycle of neurotoxicity, possibly mediated by increased levels of retinal Zn . Ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) are two NTFs that are known to support RGC survival and promote axon regeneration.
View Article and Find Full Text PDFJ Neurodev Disord
November 2024
Department of Biomedical and Neuromotor Science, University of Bologna, Piazza Di Porta San Donato 2, 40126, Bologna, Italy.
Background: Mutations in the X-linked CDKL5 gene underlie a severe epileptic encephalopathy, CDKL5 deficiency disorder (CDD), characterized by gross motor impairment, autistic features and intellectual disability. Absence of Cdkl5 negatively impacts neuronal proliferation, survival, and maturation in in vitro and in vivo models, resulting in behavioral deficits in the Cdkl5 KO mouse. While there is no targeted therapy for CDD, several studies showed that treatments enabling an increase in brain BDNF levels give rise to structural and behavioral improvements in Cdkl5 KO mice.
View Article and Find Full Text PDFMol Med Rep
February 2025
Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, Anhui 233030, P.R. China.
The occurrence of epilepsy is a spontaneous and recurring process due to abnormal neuronal firing in the brain. Epilepsy is understood to be caused by an imbalance between excitatory and inhibitory neurotransmitters in the neural network. The close association between astrocytes and synapses can regulate the excitability of neurons through the clearance of neurotransmitters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!