A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploration in the Mechanism of Zhisou San for the Treatment of Cough Variant Asthma Based on Network Pharmacology. | LitMetric

Exploration in the Mechanism of Zhisou San for the Treatment of Cough Variant Asthma Based on Network Pharmacology.

Evid Based Complement Alternat Med

Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.

Published: June 2022

Background: Cough variant asthma (CVA) has no definitive diagnosis or pathogenic causes, and there is currently no effective and safe treatment.

Methods: The network pharmacology was employed to investigate possible targets of Zhisou San (ZSS) in CVA treatment. The main chemical constituents of seven herbs in ZSS were collected based on the TCMSP. To explain the main mechanism, we sequentially screened the targets of each active ingredient and constructed the network of "herb-ingredient-target-disease." The core targets of ZSS were further confirmed by the molecular docking analysis. Furthermore, pulmonary function, histopathology, and biochemical assays in mice were used to investigate the effect of ZSS on the treatment of CVA.

Results: A total of 137 active ingredients and 86 potential targets for the ZSS in the treatment of CVA were screened, which were connected with the regulation of inflammatory response and immune balance, such as IL-17 signaling pathway, Th17 cell differentiation, TNF signaling pathway, Toll-like receptor signaling pathway, MAPK signaling pathway, T-cell receptor signaling pathway, Th1 and Th2 cell differentiation, and other signaling pathways closely related to the pathogenesis of CVA. Thereinto, 29 core targets contained 8 of the highest scores and could evidently bind to components such as stigmasterol, quercetin, stemoninine B, luteolin, and -sitosterol predicted by molecular docking. Furthermore, experiments in vivo were conducted for further validation that ZSS had essential effects on lung function and histopathology as well as the inflammatory state in CVA mice, which was significantly related to regulating the Th17/Treg immune balance to reduce inflammation as the important pharmacological mechanism.

Conclusion: This study revealed that ZSS has multicomponent and multipathway characteristics of ZSS in the treatment of CVA, which was primarily associated with inflammation and Th17/Treg immune balance. This study provides a scientific foundation for systematically elaborating the pharmacological activities and mechanism of ZSS, as well as explaining the reliability of the TCM compatibility theory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259218PMC
http://dx.doi.org/10.1155/2022/1698571DOI Listing

Publication Analysis

Top Keywords

signaling pathway
20
zss treatment
12
immune balance
12
zss
9
zhisou san
8
cough variant
8
variant asthma
8
network pharmacology
8
core targets
8
targets zss
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!