The present study aims to design a robust adaptive controller employed in the active tuned mass damper (ATMD) system to overcome undesirable vibrations in multistory buildings under seismic excitations. We propose a novel adaptive type-2 neural-fuzzy controller (AT2NF). All system parameters are taken as unknowns. The MLP neural network is used to extract the Jacobian and estimate the structural model; then, the estimated model is applied to the controller online. To tune the control force applied to the ATMD and achieve the control targets, the controller parameters are adaptively trained using the extended Kalman Filter (EKF) and the error back-propagation algorithm. A PID controller is also included in this method to increase the stability and robustness of the adaptive type-2 neural-fuzzy controller against seismic vibrations. An online simple adaptive controller (OSAC) is studied to demonstrate the suggested controller's superiority. The OSAC is based on adaptive control of the implicit reference model. In this proposed method, the EKF is used to tune the controller parameters online as a novel feature. The uncertainty associated with identifying the mechanical properties of structures, such as mass and stiffness, is one of the primary challenges in the real-time control of structures. This paper investigates how both controllers cope with parametric uncertainties under far-field and near-field seismic excitation. According to numerical results, the AT2NF controller outperforms OSAC in minimizing the dynamic responses of the structure during an earthquake and accomplishing control objectives when the structure's characteristics change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270154PMC
http://dx.doi.org/10.1155/2022/5832043DOI Listing

Publication Analysis

Top Keywords

adaptive controller
12
adaptive type-2
12
type-2 neural-fuzzy
12
neural-fuzzy controller
12
controller
11
seismic excitations
8
online simple
8
simple adaptive
8
controller online
8
controller parameters
8

Similar Publications

Background: High temperature is a critical environmental factor leading to mass mortality in oyster aquaculture in China. Recent advancements highlight the physiological regulation function of γ-aminobutyric acid (GABA) in the adaptation of environmental stress.

Methods And Results: This study examined the physiological responses of the Pacific oyster (Crassostrea gigas) upon high temperature exposure, focusing on the histopathological changes in gill, the GABA concentration, the mRNA expression and activities of apoptosis-related genes.

View Article and Find Full Text PDF

Immunological interventions, like vaccinations, are enabled by the predictive control of humoral responses to novel antigens. While the development trajectories for many broadly neutralizing antibodies (bnAbs) have been measured, it is less established how human subtype-specific antibodies develop from their precursors. In this work, we evaluated the retrospective development trajectories for eight anti-SARS-CoV-2 Spike human antibodies (Abs).

View Article and Find Full Text PDF

Multifunctional plant growth-promoting rhizobacteria (PGPR) have garnered significant attention in agricultural applications; however, a few have applied them in crop rotation or intercropping fields. To identify PGPR with strong colonization ability and broad spectrum benefit, we screened strains from the local tobacco rhizosphere and evaluated their growth-promoting effects across various crops and farming systems. In this study, strain L8, identified as , was selected as a multifunctional PGPR capable of producing indole-3-acetic acid (IAA), solubilizing potassium, and mobilizing both organic and inorganic phosphorus.

View Article and Find Full Text PDF

Introduction: The understanding of the interaction of closed-loop control of ventilation and oxygenation, specifically fraction of inspired oxygen (FiO2) and positive end-expiratory pressure (PEEP), and fluid resuscitation after burn injury and acute lung injury from smoke inhalation is limited. We compared the effectiveness of FiO2, PEEP, and ventilation adjusted automatically using adaptive support ventilation (ASV) and decision support fluid resuscitation based on urine output in a clinically relevant conscious ovine model of lung injury secondary to combined smoke inhalation and major burn injury.

Methods: Sheep were subjected to burn and smoke inhalation injury under deep anesthesia and analgesia.

View Article and Find Full Text PDF

Background: Correct information is an essential tool to guide thoughts, attitudes, daily choices or more important decisions such as those regarding health. Today, a huge amount of information sources and media is available. Increasing possibilities of obtaining data also require understanding and positioning skills, particularly the ability to navigate the ocean of information and to choose what is best without becoming overwhelmed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!