Much of current artificial intelligence (AI) and the drive toward artificial general intelligence (AGI) focuses on developing machines for functional tasks that humans accomplish. These may be narrowly specified tasks as in AI, or more general tasks as in AGI - but typically these tasks do not target higher-level human cognitive abilities, such as consciousness or morality; these are left to the realm of so-called "strong AI" or "artificial consciousness." In this paper, we focus on how a machine can humans rather than what they do, and we extend this beyond AGI-style tasks to augmenting peculiarly personal human capacities, such as wellbeing and morality. We base this proposal on associating such capacities with the "self," which we define as the "environment-agent nexus"; namely, a fine-tuned interaction of brain with environment in all its relevant variables. We consider richly adaptive architectures that have the potential to implement this interaction by taking lessons from the brain. In particular, we suggest conjoining the free energy principle (FEP) with the dynamic temporo-spatial (TSD) view of neuro-mental processes. Our proposed integration of FEP and TSD - in the implementation of artificial agents - offers a novel, expressive, and explainable way for artificial agents to adapt to different environmental contexts. The targeted applications are broad: from adaptive intelligence augmenting agents (IA's) that assist psychiatric self-regulation to environmental disaster prediction and personal assistants. This reflects the central role of the mind and moral decision-making in most of what we do as humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260143 | PMC |
http://dx.doi.org/10.3389/fncom.2022.892354 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!