13.59
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=35813935&retmode=xml&tool=RemsenMedia&email=hello@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f0813.59
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=bold+response&datetype=edat&usehistory=y&retmax=5&tool=RemsenMedia&email=hello@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f0813.59
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957a1e9ceff936eb0f87ff&query_key=1&retmode=xml&retmax=5&tool=RemsenMedia&email=hello@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08
Due to the vascular origin of the fMRI signal, the spatiotemporally precise interpretation of the blood oxygen level-dependent (BOLD) response as brain-wide correlate of neuronal activity is limited. Optical fiber-based neuronal calcium recordings provide a specific and temporally highly resolved signal yet lacking brain-wide coverage. The cross-modal integration of both modalities holds the potential for unique synergies. The OPTO-MAgnetic Integration Concept (OPTOMAIC) extracts the very fraction of the BOLD response that reacts to optically recorded neuronal signals-of-interest. First, OPTOMAIC identifies the trials containing neuronal signal-of-interest (SoI) in the optical recordings. The long duration of the BOLD response is considered by calculating and thresholding neuronal interevent intervals. The resulting optical regression vector is probed for a positive BOLD response with single-event and single-voxel resolution, generating a BOLD response matrix containing only those events and voxels with both a neuronal SoI and a positive fMRI signal increase. Last, the onset of the BOLD response is being quantified, representing the section of the BOLD response most reliably reporting at least components of the neuronal signal. The seven OPTOMAIC steps result in a brain-wide BOLD signature reflecting the underlying neuronal SoI with utmost cross-modal integration depth and taking full advantage of the specific strengths of each method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259002 | PMC |
http://dx.doi.org/10.1117/1.NPh.9.3.032213 | DOI Listing |
PLoS One
January 2025
Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined.
View Article and Find Full Text PDFElife
January 2025
Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, Netherlands.
This study investigates the functional network underlying response inhibition in the human brain, particularly the role of the basal ganglia in successful action cancellation. Functional magnetic resonance imaging (fMRI) approaches have frequently used the stop-signal task to examine this network. We merge five such datasets, using a novel aggregatory method allowing the unification of raw fMRI data across sites.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
December 2024
Department of Neurology, Wuhan Brain Hospital, General Hospital of Yangtze River Shipping, Wuhan, Hubei, China.
Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) method. ASL techniques can quantitatively measure cerebral perfusion by fitting a kinetic model to the difference between labelled images (tag images) and ones which are acquired without labelling (control images). ASL functional MRI (fMRI) provides quantitative perfusion maps by using arterial water as an endogenous tracer instead of depending on vascular blood oxygenation level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!