Mutational meltdown describes an eco-evolutionary process in which the accumulation of deleterious mutations causes a fitness decline that eventually leads to the extinction of a population. Possible applications of this concept include medical treatment of RNA virus infections based on mutagenic drugs that increase the mutation rate of the pathogen. To determine the usefulness and expected success of such an antiviral treatment, estimates of the expected time to mutational meltdown are necessary. Here, we compute the extinction time of a population under high mutation rates, using both analytical approaches and stochastic simulations. Extinction is the result of three consecutive processes: (a) initial accumulation of deleterious mutations due to the increased mutation pressure; (b) consecutive loss of the fittest haplotype due to Muller's ratchet; (c) rapid population decline toward extinction. We find accurate analytical results for the mean extinction time, which show that the deleterious mutation rate has the strongest effect on the extinction time. We confirm that intermediate-sized deleterious selection coefficients minimize the extinction time. Finally, our simulations show that the variation in extinction time, given a set of parameters, is surprisingly small.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9257376PMC
http://dx.doi.org/10.1002/ece3.9046DOI Listing

Publication Analysis

Top Keywords

extinction time
24
mutational meltdown
12
extinction
9
time mutational
8
high mutation
8
mutation rates
8
accumulation deleterious
8
deleterious mutations
8
mutation rate
8
time
6

Similar Publications

This paper is devoted to the investigation of the plasmonic effect of metal nanoparticles (NPs) formed on the surface of the YAG: Bi, Ce, Yb phosphors in a temperature range between 4 and 300 K. Combination of a thin conversion layer with silver plasmonic nanostructures leads to increase of sensitizer absorption and emission efficiency. Enhancement of Bi luminescence in YAG epitaxial films with Ag NPs was observed upon cooling the samples below 200 K.

View Article and Find Full Text PDF

Morphological patterns of the European bison (Bison bonasus) skull.

Sci Rep

January 2025

Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776, Warsaw, Poland.

This study aimed to investigate the effects of environmental factors, sexual selection, and genetic variation on skull morphology by examining the skull structure of the European bison, a species at risk of extinction, and comparing it to other bovid species. The skull of the European bison was significantly bigger than that of other species of the tribe Bovini, and the results revealed considerable morphological differences in skull shape compared to other Bovini samples. The bison skull exhibited a broader shape in the frontal region and a more laterally oriented cornual process.

View Article and Find Full Text PDF

Measuring trends in extinction risk: a review of two decades of development and application of the Red List Index.

Philos Trans R Soc Lond B Biol Sci

January 2025

BirdLife International, David Attenborough Building, Pembroke Street, Cambridge CB2 3QZ, UK.

The Red List Index (RLI) is an indicator of the average extinction risk of groups of species and reflects trends in this through time. It is calculated from the number of species in each category on the IUCN Red List of Threatened Species, with trends influenced by the number moving between categories when reassessed owing to genuine improvement or deterioration in status. The global RLI is aggregated across multiple taxonomic groups and can be disaggregated to show trends for subsets of species (e.

View Article and Find Full Text PDF

Human-driven habitat loss is recognized as the greatest cause of the biodiversity crisis, yet to date we lack robust, spatially explicit metrics quantifying the impacts of anthropogenic changes in habitat extent on species' extinctions. Existing metrics either fail to consider species identity or focus solely on recent habitat losses. The persistence score approach developed by Durán .

View Article and Find Full Text PDF

The rapid changes in the global environment have led to an unprecedented decline in biodiversity, with over 28% of species facing extinction. This includes snakes, which are key to ecological balance. Detecting snakes is challenging due to their camouflage and elusive nature, causing data loss and feature extraction difficulties in ecological monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!