Post-translational modifications (PTMs), such as glycosylation and palmitoylation, are critical to protein folding, stability, intracellular trafficking, and function. Understanding regulation of PTMs of SARS-CoV-2 spike (S) protein could help the therapeutic drug design. Herein, the VSV vector was used to produce SARS-CoV-2 S pseudoviruses to examine the roles of the LYQD and cysteine-rich motifs in S protein maturation and virus infectivity. Our results show that LY mutation alters S protein intracellular trafficking and reduces cell surface expression level. It also changes S protein glycosylation pattern and decreases pseudovirus infectivity. The S protein contains four cysteine-rich clusters with clusters I and II as the main palmitoylation sites. Mutations of clusters I and II disrupt S protein trafficking from ER-to-Golgi, suppress pseudovirus production, and reduce spike-mediated membrane fusion activity. Taken together, glycosylation and palmitoylation orchestrate the S protein maturation processing and are critical for S protein-mediated membrane fusion and infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250814PMC
http://dx.doi.org/10.1016/j.isci.2022.104709DOI Listing

Publication Analysis

Top Keywords

intracellular trafficking
12
sars-cov-2 spike
8
protein
8
protein intracellular
8
glycosylation palmitoylation
8
protein maturation
8
membrane fusion
8
glycosylation
4
glycosylation s-palmitoylation
4
s-palmitoylation regulate
4

Similar Publications

Tsg101 mimicry of canonical E2 enzymes underlies its role in ubiquitin signaling.

Proc Natl Acad Sci U S A

January 2025

Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222.

Tsg101 is a highly conserved protein best known as an early-functioning component of cellular ESCRT machinery participating in recognition, sorting, and trafficking of cellular cargo to various intracellular destinations. It shares sequence and structural homology to canonical ubiquitin-conjugating (E2) enzymes and is linked to diverse events regulated by Ub signaling. How it might fulfill these roles is unclear.

View Article and Find Full Text PDF

Mammalian SLC39A13 promotes ER/Golgi iron transport and iron homeostasis in multiple compartments.

Nat Commun

December 2024

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.

View Article and Find Full Text PDF

A truncated isoform of Connexin43 caps actin to organize forward delivery of full-length Connexin43.

J Cell Biol

March 2025

Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.

While membrane proteins such as ion channels continuously turn over and require replacement, the mechanisms of specificity of efficient channel delivery to appropriate membrane subdomains remain poorly understood. GJA1-20k is a truncated Connexin43 (Cx43) isoform arising from translation initiating at an internal start codon within the same parent GJA1 mRNA and is requisite for full-length Cx43 trafficking to cell borders. GJA1-20k does not have a full transmembrane domain, and it is not known how GJA1-20k enables forward delivery of Cx43 hemichannels.

View Article and Find Full Text PDF

Enhancing leuprolide penetration through enterocytes via the ER-Golgi pathway using lipophilic complexation.

Eur J Pharm Biopharm

December 2024

School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China. Electronic address:

Oral delivery of peptide drugs remains one of the most formidable challenges in the frontier of pharmaceutical research. Peptide drugs typically suffer from exceptionally low oral bioavailability, primarily attributed to rigorous enzymatic degradation within the gastrointestinal (GI) tract, limited ability to traverse the enterocyte barrier, and significant first-pass hepatic metabolism. Absorption of peptide drugs via the lymphatic route could potentially bypass intracellular lysosome degradation and hepatic first-pass metabolism.

View Article and Find Full Text PDF

Inhibitory Effects of Cryptotanshinone and Dihydrotanshinone I on Intracellular Trafficking of Viral Glycoproteins.

J Microbiol Biotechnol

December 2024

Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea.

Antiviral agents that target the viral envelope surface glycoproteins can disrupt the interactions between the viral glycoproteins and host cell receptors, thereby preventing viral entry into host cells. However, the mechanisms underlying glycoprotein processing and cellular trafficking have not been fully elucidated. In this study, we aimed to investigate the mechanism of action of cryptotanshinone (CTN) and dihydrotanshinone I (DTN) as inhibitors of viral glycoprotein trafficking, by assessing their inhibitory action on syncytium formation and cytopathic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!