AI Article Synopsis

Article Abstract

Objective: The aim of this study was to explore the relationship between the Hedgehog signaling pathway and drug resistance in multiple myeloma.

Methods: The human myeloma cell line RPMI 8266 was taken as the research object. An azithromycin (AZM)-resistant cell line RPMI 8226/R was constructed, and GENT61 was used to block the Hedgehog signaling pathway. Cells were rolled into RPMI 8226/S (S group), RPMI 8226/R (R group), GENT61+RPMI 8226/S (GENT61+S group), and GENT61+RPMI 8226/R (GENT61+R group). The proliferation of cells in each group was assessed, and the expression of patched homolog 1 (PTCH1), zinc finger-containing transcription factors 1 (GLI1), GLI2, hair-division associated enhancer 1 (Hes1), and sonic hedgehog factor (SHH) in each group was detected. Interleukin (IL)-6 and vascular endothelial growth factor (VEGF) were measured.

Results: Compared with the S group, the expression levels of PTCH1, GLI2, Hes1, and SHH and the contents of IL-6 and VEGF in the group were greatly increased, while the expression level of GLI1 was notably decreased ( < 0.05). Compared with the group, the GENT61+R group greatly increased cell proliferation inhibition. However, the expression levels of PTCH1, GLI2, Hes1, and SHH, and the contents of IL-6 and VEGF were notably decreased, while GLI1 expression levels were greatly increased ( < 0.05).

Conclusion: AZM-resistant multiple myeloma was closely associated with the Hedgehog signaling pathway activation, and blocking the Hedgehog signaling pathway can be used as a therapeutic target to improve drug resistance in multiple myeloma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259296PMC
http://dx.doi.org/10.1155/2022/1399697DOI Listing

Publication Analysis

Top Keywords

hedgehog signaling
20
signaling pathway
20
resistance multiple
12
multiple myeloma
12
expression levels
12
greatly increased
12
group
10
drug resistance
8
cell rpmi
8
rpmi 8226/r
8

Similar Publications

NME7 maintains primary cilium assembly, ciliary microtubule stability, and Hedgehog signaling.

Life Sci Alliance

April 2025

https://ror.org/0040axw97 Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China

NME7 (nucleoside diphosphate kinase 7), a lesser studied member of the non-metastatic expressed (NME) family, has been reported as a potential subunit of the γ-tubulin ring complex (γTuRC). However, its role in the cilium assembly and function remains unclear. Our research demonstrated that NME7 is located at the centrosome, including at the spindle poles during metaphase and at the basal bodies during cilium assembly.

View Article and Find Full Text PDF

Polycystic kidney diseases (PKD) are genetic disorders which disrupt kidney architecture and function. Autosomal recessive PKD (ARPKD) is a rare form of PKD, caused by mutations in PKHD1, and clinically more severe than the more common autosomal dominant PKD (ADPKD). Prior studies have implicated Hedgehog (Hh) signaling in ADPKD, with increased levels of Hh components in experimental ADPKD and reduced cystogenesis following pharmacological Hh inhibition.

View Article and Find Full Text PDF

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathway is a key player in animal development and physiology. Although it functions in a variety of processes, the net output of JAK-STAT signalling depends on its spatiotemporal activation, as well as extensive crosstalk with other signalling pathways. Drosophila, with its relatively simple signal transduction pathways and plethora of genetic analysis tools, is an ideal system for dissecting JAK-STAT signalling interactions.

View Article and Find Full Text PDF

Embryonic Mammary Gland Morphogenesis.

Adv Exp Med Biol

January 2025

Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.

Embryonic mammary gland development unfolds with the specification of bilateral mammary lines, thereafter progressing through placode, bud, and sprout stages before branching morphogenesis. Extensive epithelial-mesenchymal interactions guide morphogenesis from embryogenesis to adulthood. Two distinct mesenchymal tissues are involved, the primary mammary mesenchyme that harbors mammary inductive capacity, and the secondary mesenchyme, the precursor of the adult stroma.

View Article and Find Full Text PDF

Primary cilia are sensory organelles that regulate various signaling pathways. When microtubules are compared to a highway, motor proteins carry and transport cargo proteins, which are tuned by post-translational modifications, such as acetylation. However, the role of acetylation in primary cilia regulation remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!