A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning-Based Prediction of Impulse Control Disorders in Parkinson's Disease From Clinical and Genetic Data. | LitMetric

Machine Learning-Based Prediction of Impulse Control Disorders in Parkinson's Disease From Clinical and Genetic Data.

IEEE Open J Eng Med Biol

Department of NeurologyParis Brain Institute, Inserm, CNRS, Sorbonne Université, Assistance Publique Hôpitaux de Paris, Centre d'Investigation Clinique Neurosciences, Hôpital Pitié-Salpêtrière F-75013 Paris France.

Published: May 2022

: Impulse control disorders (ICDs) are frequent non-motor symptoms occurring during the course of Parkinson's disease (PD). The objective of this study was to estimate the predictability of the future occurrence of these disorders using longitudinal data, the first study using cross-validation and replication in an independent cohort. We used data from two longitudinal PD cohorts (training set: PPMI, Parkinson's Progression Markers Initiative; test set: DIGPD, Drug Interaction With Genes in Parkinson's Disease). We included 380 PD subjects from PPMI and 388 PD subjects from DIGPD, with at least two visits and with clinical and genetic data available, in our analyses. We trained three logistic regressions and a recurrent neural network to predict ICDs at the next visit using clinical risk factors and genetic variants previously associated with ICDs. We quantified performance using the area under the receiver operating characteristic curve (ROC AUC) and average precision. We compared these models to a trivial model predicting ICDs at the next visit with the status at the most recent visit. The recurrent neural network (PPMI: 0.85 [0.80 - 0.90], DIGPD: 0.802 [0.78 - 0.83]) was the only model to be significantly better than the trivial model (PPMI: ROC AUC = 0.75 [0.69 - 0.81]; DIGPD: 0.78 [0.75 - 0.80]) on both cohorts. We showed that ICDs in PD can be predicted with better accuracy with a recurrent neural network model than a trivial model. The improvement in terms of ROC AUC was higher on PPMI than on DIGPD data, but not clinically relevant in both cohorts. Our results indicate that machine learning methods are potentially useful for predicting ICDs, but further works are required to reach clinical relevance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252337PMC
http://dx.doi.org/10.1109/OJEMB.2022.3178295DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
recurrent neural
12
neural network
12
roc auc
12
trivial model
12
impulse control
8
control disorders
8
clinical genetic
8
genetic data
8
icds visit
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!