A Phase 1b Clinical Study of Intravesical Photodynamic Therapy in Patients with Bacillus Calmette-Guérin-unresponsive Non-muscle-invasive Bladder Cancer.

Eur Urol Open Sci

Divisions of Urology and Surgical Oncology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada.

Published: July 2022

Background: A phase 1b study of photosensitizer TLD-1433-mediated photodynamic therapy (PDT) was performed in bacillus Calmette-Guérin (BCG)-unresponsive non-muscle-invasive bladder cancer (NMIBC) patients.

Objective: The primary objectives were safety and tolerability of PDT, with secondary objectives of (1) pharmacokinetic (PK) properties of TLD-1433 and (2) efficacy, as evaluated by recurrence-free survival and complete response (CR) at 90 and 180 d for patients treated at the maximum recommended starting dose (0.35 mg/cm bladder surface area) and the therapeutic dose (0.70 mg/cm).

Design Setting And Participants: Six BCG-unresponsive patients were enrolled in an open-label, single-arm, dose-escalating study of PDT. TLD-1433 was instilled intravesically for 60 min preoperatively. PDT was performed under general anesthesia using intravesically delivered irradiation of the bladder wall with green light (520 nm) to a dose of 90 J/cm.

Outcome Measurements And Statistical Analysis: Patients were followed by standard cystoscopy and cytology for up to 18 mo to assess time to recurrence.

Results And Limitations: PDT was well tolerated by all patients. All patients experienced at least one grade ≤2 adverse event (AE). There were no patient deaths or light sensitivity reactions. The most common AE was moderate bladder irritability, which resolved within the first weeks after treatment. AEs were independent of the TLD-1433 dose. TLD-1433 was cleared in the urine and from the plasma within 24 and 72 h, respectively. Of three patients treated at the therapeutic dose, two achieved a CR at 180 d, which was durable at 18 mo. The other patient was diagnosed with metastatic disease at 138 d.

Conclusions: PDT with TLD-1433 appears safe for the treatment of BCG-unresponsive NMIBC. Early efficacy signals from full-dose photosensitizer are encouraging and warrant phase 2 trial investigation. The safety and PK results obtained support the potential for administration of consecutive PDT treatments as required.

Patient Summary: Photodynamic therapy with TLD-1433 appears to be safe and effective for the treatment of bacillus Calmette-Guérin (BCG)-unresponsive bladder cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9257636PMC
http://dx.doi.org/10.1016/j.euros.2022.04.015DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
12
bladder cancer
12
non-muscle-invasive bladder
8
pdt performed
8
bacillus calmette-guérin
8
calmette-guérin bcg-unresponsive
8
patients treated
8
therapeutic dose
8
pdt tld-1433
8
tld-1433 appears
8

Similar Publications

Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.

View Article and Find Full Text PDF

A Integrated Molecule Based on Ferritin Nanoplatforms for Inducing Tumor Ferroptosis with the Synergistic Photo/Chemodynamic Treatment.

ACS Appl Mater Interfaces

January 2025

Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China.

Ferroptosis combined with photodynamic therapy (PDT) has emerged as a powerful approach to induce cancer cell death by producing and accumulating lethal reactive oxygen species (ROS) in the tumor microenvironment (TME). Despite its efficacy and safety, challenges persist in delivering multiple drugs to the tumor site for enhanced antitumor efficacy and improved tissue targeting. Hence, we designed a method of inducing ferroptosis through laser-mediated and human homologation-specific efficient activation, which is also a ferroptosis therapy with higher safety through ROS-mediated.

View Article and Find Full Text PDF

Background: Candida albicans is the primary cause of vulvovaginal candidiasis, a worldwide health concern for women. The use of supplemental methods, such as antimicrobial photodynamic therapy (aPDT) and probiotics, was promoted by the ineffectiveness of the existing antifungal drugs.

Methods: This study examines the combined effects of probiotics (Bacillus and Enterococcus isolated from the fermented pickles) and PDT (using red laser (655 nm, 18 J/cm) as a light source and methylene blue dye (30 mg/mL) as a photosensitizer) on the in vitro virulence activity of C.

View Article and Find Full Text PDF

Engineered Au@MOFs silk fibroin-based hydrogel phototherapy platform for enhanced wound healing performance.

Int J Biol Macromol

January 2025

School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:

Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a treatment modality clinically approved for several oncologic indications, including esophageal and endobronchial cancers, precancerous conditions including Barrett's esophagus and actinic keratosis, and benign conditions like age-related macular degeneration. While it is currently clinically underused, PDT is an area of significant research interest. Because PDT relies on the absorption of light energy by intrinsic or administered absorbers, the dosimetric quantity of interest is the absorbed energy per unit mass of tissue, proportional to the fluence rate of light in tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!