Background: NDRG1 has been reported to exhibit relatively low expression levels in glioma tissues compared with adjacent brain tissues. Additionally, NDRG1 is reported to be a tumor suppressor with the potential to suppress the proliferation, invasion, and migration of cancer cells. However, its exact roles in GBM are still unknown.
Methods: Gene Expression Profiling Interactive Analysis (GEPIA) was employed to evaluate the expression level of NDRG1 in GBM. After the introduction of NDRG1, proliferation, analyses of colony formation, migration, and invasion capacities were performed. A luciferase reporter assay was performed to detect the effect of NDRG1 on the vascular endothelial growth factor A (VEGFA) promoter.
Results: In this study, data from GBM and healthy individuals were retrospectively collected by employing GBM, and VEGFA was found to be differentially expressed in GBM tissues compared with adjacent brain tissues. Furthermore, NDRG1 expression is positively correlated with VEGFA expression, but not expression of the other two VEGF isoforms, VEGFB and VEGFC. In the glioma cell lines U87MG and U118, overexpression of NDRG1 significantly upregulated VEGFA. By performing a dual-luciferase reporter assay, it was observed that overexpressed NDRG1 transcriptionally activated VEGFA. Expectedly, overexpression of NDRG1 decreased cell viability by blocking cell cycle phases at G1 phase. Additionally, overexpression of NDRG1 inhibited invasion, colony formation, and tumor formation in soft agar. Remarkably, VEGFA silencing or blockade of VEGF receptor 2 (VEGFR2) further inhibited malignant behaviors in soft agar, including proliferation, invasion, colony formation, and tumor formation.
Conclusions: NDRG1-induced VEGFA exerts protective effects in GBM via the VEGFA/VEGFR2 pathway. Therefore, targeting both NDRG1 and VEGFA may represent a novel therapy for the treatment of GBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262576 | PMC |
http://dx.doi.org/10.1155/2022/3233004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!