The quest for neuroprotective factors that can prevent or slow down the progression of retinal degeneration is still ongoing. Acute hypoxic stress has been shown to provide transient protection against subsequent damage in the retina. Stanniocalcins - STC1 and STC2 - are secreted glycoproteins that are hypoxia-regulated and were shown to be cytoprotective in various studies. Hence, we investigated the expression of stanniocalcins in the normal, degenerating and hypoxic retina. We show that the expression of and in the retina was detectable as early as postnatal day 10 and persisted during aging. Retinal expression of , but not , was induced in mice in an model of acute hypoxia and a genetic model of chronic hypoxia. Furthermore, we show that HIF1, not HIF2, is responsible for regulating in cells with the molecular response to hypoxia activated due to the absence of von Hippel Lindau protein. Surprisingly, was not normally expressed in photoreceptors but in the inner retina, as shown by laser capture microdissection and immunofluorescence data. The expression of both and remained unchanged in the degenerative retina with an almost complete loss of photoreceptors, confirming their expression in the inner retina. However, the absence of either or had no effect on retinal architecture, as was evident from retinal morphology of the respective knockout mice. Taken together our data provides evidence for the differential regulation of STC1 and STC2 in the retina and the prospect of investigating STC2 as a retinal neuroprotective factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259883 | PMC |
http://dx.doi.org/10.3389/fnins.2022.882559 | DOI Listing |
Genome Biol
January 2025
Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.
Deciphering the link between tissue architecture and function requires methods to identify and interpret patterns in spatial arrangement of cells. We present SMORE, an approach to detect patterns in sequential arrangements of cells and examine their associated gene expression specializations. Applied to retina, brain, and embryonic tissue maps, SMORE identifies novel spatial motifs, including one that offers a new mechanism of action for type 1b bipolar cells.
View Article and Find Full Text PDFBMC Ophthalmol
January 2025
Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, Karnataka, 560010, India.
Background: Accurate localization of premacular hemorrhages (PMHs) is crucial as treatment strategies vary significantly based on whether the hemorrhage resides within the vitreous gel, subhyaloid space, or beneath the internal limiting membrane (ILM). This report outlines the clinical features, diagnostic findings, and treatment outcomes in a patient diagnosed with a PMH secondary to suspected Valsalva retinopathy.
Methods: This is a retrospective interventional case report.
Ophthalmic Physiol Opt
January 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Purpose: To explore the longitudinal changes in retinal and choroidal thickness and their relation with the onset of type 1 diabetes mellitus (T1DM) in children.
Methods: Thirty-eight children with T1DM and 71 healthy controls were included in this 3-year longitudinal study. Ophthalmic and systemic examinations were conducted on each participant.
Br J Ophthalmol
January 2025
Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
Purpose: To quantitatively explore preretinal abnormal tissue (PAT) in macula-on rhegmatogenous retinal detachment (RRD) before and after surgery.
Methods: In this case-series study, PAT was detected by en-face optical coherence tomography images with custom slabs in eyes that underwent pars plana vitrectomy and SF6 for macula-on RRD.Main outcome measures were PAT area at baseline, 3-month and 6-month follow-up, and its relative change.
Dev Cell
December 2024
Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. Electronic address:
Previous studies have demonstrated the dynamic changes in chromatin structure during retinal development correlate with changes in gene expression. However, those studies lack cellular resolution. Here, we integrate single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) with bulk data to identify cell-type-specific changes in chromatin structure during human and murine development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!