Erythropoietin deficiency is an extensively researched cause of renal anemia. The etiology and consequences of shortened red blood cell (RBC) life span in chronic kidney disease (CKD) are less well understood. Traversing capillaries requires RBC geometry changes, a process enabled by adaptions of the cytoskeleton. These changes are mediated by transient activation of the mechanosensory Piezo1 channel, resulting in calcium influx. Importantly, prolonged Piezo1 activation shortens RBC life span, presumably through activation of calcium-dependent intracellular pathways triggering RBC death. Two Piezo1-activating small molecules, Jedi1 and Jedi2, share remarkable structural similarities with 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), a uremic retention solute cleared by the healthy kidney. We hypothesize that in CKD the accumulation of CMPF leads to prolonged activation of Piezo1 (similar in effect to Jedi1 and Jedi2), thus reducing RBC life span. This hypothesis can be tested through bench experiments and, ultimately, by studying the effect of CMPF removal on renal anemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9254218 | PMC |
http://dx.doi.org/10.1096/fba.2022-00024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!