The development of a continuous hydrolysis process of titanium sulfate is an innovation to the traditional production process of titanium dioxide by the sulfuric acid process. In the experiment, a microchannel reactor was designed, and the hydrolysis rate of titanium sulfate, the particle size, and particle size distribution of metatitanic acid agglomerates were used as indicators to investigate the effect of operating conditions on the continuous hydrolysis of titanium sulfate. The results have shown that as the amount of dilution water increased, the hydrolysis rate of titanium sulfate decreased, and the particle size of primary aggregates of metatitanic acid increased from 39 to 54 nm. As the alkali mass concentration of dilution water increased, the hydrolysis rate of titanyl sulfate increased, and the particle size of primary aggregates of metastatic acid first decreased and then increased, and the particle size range was 40-48 nm. As the flow rate increased, the hydrolysis rate of titanyl sulfate increased, and the particle size of primary aggregates of metatitanic acid dropped from 59 to 43 nm. Compared with the batch hydrolysis operation, the continuous process has stronger anti-disturbance ability, significantly shorter operation time of the reaction section, and narrower particle size distribution of the product metatitanic acid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260899 | PMC |
http://dx.doi.org/10.1021/acsomega.2c01621 | DOI Listing |
Nanoscale Adv
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University Taif 21944 Saudi Arabia.
Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.
View Article and Find Full Text PDFJ Arthropod Borne Dis
June 2024
Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Background: The German cockroach () is a pest with a global distribution that has adapted to live in human environments. threatens human health by producing asthma-inducing allergens, carrying pathogenic/antibiotic-resistant microbes, and contributing to unhealthy indoor environments. Effective application of insecticides can play an important role in cockroach control programs.
View Article and Find Full Text PDFMater Today Bio
February 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
The widespread antibiotic resistance has called for alternative antimicrobial agents. Carbon nanomaterials, especially carbon quantum dots (CQDs), may be promising alternatives due to their desirable physicochemical properties and potential antimicrobial activity, but their antimicrobial mechanism remains to be investigated. In this study, nitrogen-doped carbon quantum dots (N-CQDs) were synthesized to inactivate antibiotic-resistant bacteria and treat bacterial keratitis.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
This study focused on the effect of ultrasound-assisted immersion freezing (UIF) with different ultrasound power (200, 400, 600 W) on the physicochemical and digestive properties of beef myofibrillar proteins (BMP). The results showed that the solubility and thermal stability of BMP were significantly increased, when treated with 400 W ultrasound, and the α-helix, β-sheets, β-turns, and random-coil fractions structures content were higher and the fluorescence intensity was closest to that of the control group, demonstrating enhanced structural stability of BMP. The protein digestibility of the UIF-400 W group was significantly enhanced while the particle size of the digested product was reduced, which proved its enhanced digestion characteristics.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.
Injectable biomaterials play a vital role in modern medicine, offering tailored functionalities for diverse therapeutic and diagnostic applications. In ophthalmology, for instance, viscoelastic materials are crucial for procedures such as cataract surgery but often leave residues, increasing postoperative risks. This study introduces injectable fluorescent viscoelastics (FluoVs) synthesized via one-step controlled radical copolymerization of oligo(ethylene glycol) acrylate and fluorescein acrylate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!