A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Different Radiation Sources on the Performance of Collagen-Based Corneal Repair Materials and Macrophage Polarization. | LitMetric

Owing to the lack of donor corneas, there is an urgent need for suitable corneal substitutes. As the main component of the corneal stroma, collagen has great advantages as a corneal repair material. If there are microorganisms such as bacteria in the corneal repair material, it may induce postoperative infection, causing the failure of corneal transplantation. Therefore, irradiation, as a common sterilization method, is often used to control the microorganisms in the material. However, it has not been reported which type of radiation source and what doses can sterilize more effectively without affecting the properties of collagen-based corneal repair materials (CCRMs) and have a positive impact on macrophage polarization. In this study, three different radiation sources of ultraviolet, cobalt-60, and electron beam at four different doses of 2, 5, 8, and 10 kGy were used to irradiate CCRMs. The swelling, stretching, transmittance, and degradation of the irradiated CCRMs were characterized, and the proliferation of human corneal epithelial cells on the irradiated CCRMs was characterized using the CCK8 kit. The results showed that low dose (<5 kGy) of radiation had little effect on the performance of CCRMs. Three irradiation methods with less influence were selected for the further study on RAW264.7 macrophage polarization. The results indicated that CCRMs treated with UV could downregulate the expression of pro-inflammatory related genes and upregulate the expression of anti-inflammatory genes in macrophages, which indicated that UV irradiation is a beneficial process for the preparation of CCRMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260758PMC
http://dx.doi.org/10.1021/acsomega.2c01875DOI Listing

Publication Analysis

Top Keywords

corneal repair
16
radiation sources
8
corneal
8
collagen-based corneal
8
repair materials
8
macrophage polarization
8
repair material
8
irradiated ccrms
8
ccrms characterized
8
effects radiation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!