This study focuses on developing an adhesive and cohesive molecular modeling approach to study the properties of silica surfaces and quartz cement interfaces. Atomic models were created based on reported silica surface configurations and quartz cement. For the first time, molecular dynamics (MD) simulations were conducted to investigate the cohesion and adhesion properties by predicting the interaction energy and the adhesion pressure at the cement and silica surface interface. Results show that the adhesion pressure depends on the area density (per nm) and degree of ionization, and van der Waals forces are the major contributor to the interactions between the cement and silica surfaces. Moreover, it is shown that adhesion pressure could be the actual rock failure mechanism in contrast to the reported literature which considers cohesion as the failure mechanism. The bonding energy factors for both "dry" and "wet" conditions were used to predict the water effect on the adhesion pressure at the cement-surface interface, revealing that HO can cause a significant reduction in adhesion pressure. In addition, relating the adhesion pressure to the dimensionless area ratio of the cement to silica surfaces resulted in a good correlation that could be used to distribute the adhesion pressure in a rock system based on the area of interactions between the cement and the surface. This study shows that MD simulations can be used to understand the chemomechanics relationship fundamental of cement-surfaces of a reservoir rock at a molecular/atomic level and to predict the rock mechanical failure for sandstones, limestones, and shales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260938 | PMC |
http://dx.doi.org/10.1021/acsomega.2c01129 | DOI Listing |
Med Sci (Paris)
January 2025
Institut toulousain des maladies infectieuses et inflammatoires (INFINITy), Université de Toulouse, CNRS UMR5051, Inserm UMR1291, Université Paul Sabatier, Toulouse, France.
The direct application of cold plasmas at atmospheric pressure, corresponding to partially ionized gases, is an emerging technology with a number of potential biomedical applications, including the decontamination of surgical devices. A new derived and easier to implement method has recently been developed: the use of cold atmospheric plasma-activated media (PAM). Numerous preclinical studies and in vitro models indicates that PAM treatments facilitate wound healing by promoting keratinocytes and fibroblasts migration, stimulating angiogenesis, and inhibiting bacterial proliferation, all of which are essential for this vital process.
View Article and Find Full Text PDFCell Host Microbe
January 2025
School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. Electronic address:
Opportunistic bacterial pathogens must compete with other bacteria and switch between host- and environment-adapted states. Type VI secretion systems (T6SSs) occur widely in gram-negative bacteria and can efficiently kill neighboring competitors. We determined the distribution of T6SSs across the genus Serratia and observed that a highly conserved antibacterial T6SS is differentially active between closely related clinical isolates of Serratia marcescens.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China.
Introduction: Transdermal patches offer a unique advantage by providing extended therapeutic benefits while maintaining stable plasma drug concentration. The efficacy and safety of patches depend significantly on their ability to adhere to the skin, a feature influenced by various external and internal factors.
Areas Covered: The review primarily focuses on the fundamental aspects of adhesion in transdermal patches, including basic information about the skin, the underlying principles of adhesion, drug delivery, and adhesion characteristics of pressure sensitive adhesives (PSAs), adhesion issues, impact factors, strategies to improve patch adhesion, and relevant molecular mechanisms.
Int J Biol Macromol
January 2025
Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; School of Public Health, Qingdao University, Qingdao 266021, China.
Type 1 resistant starch (RS1) was prepared by high-pressure homogenization of corn starch (CS) embedded with 0.1 %, 0.3 %, 0.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
A key trait of Eukarya is the independent evolution of complex multicellular (CM) in animals, plants, fungi, brown algae and red algae. This phenotype is characterized by the initial exaptation of cell-cell adhesion genes followed by the emergence of mechanisms for cell-cell communication, together with the expansion of transcription factor gene families responsible for cell and tissue identity. The number of cell types (NCT) is commonly used as a quantitative proxy for biological complexity in comparative genomics studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!