Temporal endurance of exercise-induced benefits on hippocampus-dependent memory and synaptic plasticity in female mice.

Neurobiol Learn Mem

Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States. Electronic address:

Published: October 2022

Exercise facilitates hippocampal neurogenesis and neuroplasticity that in turn, promotes cognitive function. Our previous studies have demonstrated that in male mice, voluntary exercise enables hippocampus-dependent learning in conditions that are normally subthreshold for long-term memory formation in sedentary animals. Such cognitive enhancement can be maintained long after exercise has ceased and can be re-engaged by a subsequent subthreshold exercise session, suggesting exercise-induced benefits are temporally dynamic. In females, the extent to which the benefits of exercise can be maintained and the mechanisms underlying this maintenance have yet to be defined. Here, we examined the exercise parameters required to initiate and maintain the benefits of exercise in female C57BL/6J mice. Using a subthreshold version of the hippocampus-dependent task called object-location memory (OLM) task, we show that 14d of voluntary exercise enables learning under subthreshold acquisition conditions in female mice. Following the initial exercise, a 7d sedentary delay results in diminished performance, which can be re-facilitated when animals receive 2d of reactivating exercise following the sedentary delay. Assessment of estrous cycle reveals enhanced wheel running activity during the estrus phase relative to the diestrus phase, whereas estrous phase on training or test had no effect on OLM performance. Utilizing the same exercise parameters, we demonstrate that 14d of exercise enhances long-term potentiation (LTP) in the CA1 region of the hippocampus, an effect that persists throughout the sedentary delay and following the reactivating exercise session. Previous studies have proposed exercise-induced BDNF upregulation as the mechanism underlying exercise-mediated benefits on synaptic plasticity and cognition. However, our assessment of hippocampal Bdnf mRNA expression following memory retrieval reveals no difference between exercise conditions and control, suggesting that persistent Bdnf upregulation may not be required for maintenance of exercise-induced benefits. Together, our data indicate that 14d of voluntary exercise can initiate long-lasting benefits on neuroplasticity and cognitive function in female mice, establishing the first evidence on the temporal endurance of exercise-induced benefits in females.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9901197PMC
http://dx.doi.org/10.1016/j.nlm.2022.107658DOI Listing

Publication Analysis

Top Keywords

exercise-induced benefits
16
exercise
15
female mice
12
voluntary exercise
12
sedentary delay
12
temporal endurance
8
endurance exercise-induced
8
benefits
8
synaptic plasticity
8
cognitive function
8

Similar Publications

Pulmonary function in swimmers exposed to disinfection by-products: a narrative review.

Front Physiol

January 2025

Department of Sport Medicine and Traumatology, Poznan Univeristy of Physical Education, Poznań, Poland.

Swimming produces many psychophysiological effects, including blood, hormonal, enzymatic, pulmonary, cardiovascular and energetic adaptations. However, asthma and allergies are becoming increasingly prevalent medical issues among elite endurance-trained swimmers, where exercise-induced asthma or bronchospasm is frequently reported. Heavy endurance swimming training, especially under adverse conditions, stresses the airway mucosa, leading to inflammatory changes, as observed in induced sputum in competitive swimmers.

View Article and Find Full Text PDF

Osteogenesis with impact-loading exercise is often assessed by the extra bone growth induced in the loaded arm of tennis players. We used PRISMA to explore % bone mineral content (BMC) and area (BA) asymmetry in players 8-30 years according to weekly training hours, age, sex, maturity, and bone segment. Proper statistics for 70 groups were extracted by two reviewers from 18 eligible studies of low risk of bias (< 35, STROBE) and good quality (> 70%).

View Article and Find Full Text PDF

Mouse models for metabolic health research: molecular mechanism of exercise effects on health improvement through adipose tissue remodelling.

J Physiol

January 2025

Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.

Exercise provides health benefits to multiple metabolic tissues through complex biological pathways and interactions between organs. However, investigating these complex mechanisms in humans is still limited, making mouse models extremely useful for exploring exercise-induced changes in whole-body metabolism and health. In this review, we focus on gaining a broader understanding of the metabolic phenotypes and molecular mechanisms induced by exercise in mouse models.

View Article and Find Full Text PDF

Exercising regularly promotes health, but these benefits are complicated by acute inflammation induced by exercise. A potential source of inflammation is cell-free DNA (cfDNA), yet the cellular origins, molecular causes, and immune system interactions of exercise-induced cfDNA are unclear. To study these, 10 healthy individuals were randomized to a 12-wk exercise program of either high-intensity tactical training (HITT) or traditional moderate-intensity training (TRAD).

View Article and Find Full Text PDF

Physical exercise is a cornerstone for preventing diet-induced obesity, while it is unclear whether physical exercise could offset high-fat, high-calories diet (HFCD)-induced cardiac dysfunction. Here, mice were fed with HFCD and simultaneously subjected to physical exercise. As expected, physical exercise prevented HFCD-induced whole-body fat deposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!