The role of magnetite (FeO) particles for enhancing the performance and granulation of anammox.

Sci Total Environ

Department of Environmental & IT Convergence Engineering, Chungnam National University, Daejeon, Republic of Korea. Electronic address:

Published: November 2022

In this study, two lab-scale sequencing batch reactors each with an effective volume of 2.3 L were operated as C-AMX (no carrier addition) and M-AMX (magnetite carrier added) for 147 days with synthetic wastewater at an NLR range of 0.19-0.47 kgN/m/d. The long-term effect of magnetite on the granulation and performance of anammox bacteria in terms of nitrogen removal and other essential parameters were confirmed. In phase I (1-24 days), M-AMX took approximately 12 days to obtain a nitrogen removal rate (NRR) above 80 % of the initial input nitrogen. Although free nitrous acid inhibited the reactor at a high concentration at the onset of phase III, the NRR of M-AMX recovered about 3.7 times faster than that of C-AMX. In addition, it was confirmed that the M-AMX granules had a dense and compact structure compared to C-AMX, and the presence of the carrier promoted the development of these resilient granules. While the measured microbial stress gradually increased in C-AMX reactor, a vice versa was observed in the M-AMX reactor as granulation proceeded. Compared to other alternative iron-based carrier particles, the stable crystal structure of magnetite as a carrier created a mechanism where filamentous bacteria groups were repelled from the granulation hence the microbial stress in the M-AMX in the final phase was 61.54 % lower than that in the C-AMX. The iron rich environment created by the magnetite addition led to Ignavibacteria, (a Feammox bacteria) increasing significantly in the M-AMX bioreactor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157218DOI Listing

Publication Analysis

Top Keywords

magnetite carrier
8
nitrogen removal
8
microbial stress
8
m-amx
7
c-amx
5
carrier
5
role magnetite
4
magnetite feo
4
feo particles
4
particles enhancing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!