Soil ecosystem imparts a fundamental role in the growth and survival of the living creatures. The interaction between living and non-living constituents of the environment is important for the regulation of life in the ecosystem. Biochar is a carbon rich product present in the soil that is responsible for various applications in diversified fields. In this review, we focused on the collaboration between the soil, biochar and microbial community present in the soil and consequences of it in the ecosystem. Herein, it primarily discusses on the different approaches of the production and characterization of biochar. Furthermore, this review also discusses about the optimistic interaction of biochar with soil microbes and their role in plant growth. Eventually, it reveals the various physio-chemical properties of biochar, including its specific surface area, porous nature, ion exchange capacity, and pH, which aid in the modification of the soil environment. Furthermore, it elaborately discloses the impact of the biochar addition in the soil focusing mainly on its interaction with microbial communities such as bacteria and fungi. The physicochemical properties of biochar significantly interact with microbes and improve the beneficial microbes growth and increase soil nutrients, which resulting reasonable plant growth. The main focus remains on the role of biochar-soil microbiota in remediation of pollutants, soil amendment and inhibition of pathogenicity among plants by promoting resistance potential. It highlights the fact that adding biochar to soil modulates the soil microbial community by increasing soil fertility, paving the way for its use in farming, and pollutant removal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2022.113832 | DOI Listing |
Environ Sci Technol
January 2025
Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen 72076, Germany.
Defects are common features in hematite that arise from deviations from the perfect mineral crystal structure. Vacancy defects have been shown to significantly enhance arsenate (As) immobilization by hematite. However, the contributions from vacancy defects on different exposed facets of hematite have not been fully quantified.
View Article and Find Full Text PDFSci Prog
January 2025
Department of Environmental and Industrial Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia.
Objective: Heavy metal pollution is one of the more recent problems of environmental degradation caused by rapid industrialization and human activity. The objective of this study was to isolate, screen, and characterize heavy metal-resistant bacteria from solid waste disposal sites.
Methods: In this study, a total of 18 soil samples were randomly selected from mechanical sites, metal workshops, and agricultural land that received wastewater irrigation.
Biotechniques
January 2025
Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
Observation of plant root morphology in soil is of fundamental importance in plant research, but the lack of transparency of the soil hampers direct observation of roots. One of the approaches to overcome this technical limitation is the use of "transparent soil" (TS), hydrogel-based beads produced by spherification of gelling agents. However, the production of TS by natural dripping of gelling solution can be labor intensive, time consuming and difficult to maintain consistent product quality.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institut Sénégalais de Recherches Agricoles (ISRA/Centre d'Etude Regional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), Thies, Senegal.
Early leaf spot (ELS), caused by (syn. ), is a highly damaging peanut disease worldwide. While there are limited sources of resistance in cultivated peanut cultivars, wild relatives carry alleles for strong resistance, making them a valuable strategic resource for peanut improvement.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Excessive utilization of chemical fertilizers degrades the quality of medicinal plants and soil. Bio-organic fertilizers (BOFs) including microbial inoculants and microalgae have garnered considerable attention as potential substitutes for chemical fertilizer to enhance yield. In this study, a field experiment was conducted to investigate the effects of BOF partially substituting chemical fertilizer on the growth and quality of medicinal plant .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!