Heavy metal release from harsh ultramafic settings influences microbial diversity and function in soil ecology. This study aimed to determine how serpentine mineralosphere bacterial assemblies and their functions differed in two different plate-tectonic plains and mining exposure sites under heavy metal release conditions. The results showed that the Proteobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, and Chloroflexi were the most abundant bacterial groups among all the sites. The log10-based LDA scores highlighted that some specific groups of bacterial assemblies were enriched in plate-tectonic plains and mining activity areas of the serpentine mineralosphere. Functional prediction revealed that the abundance of heavy metal (Cr and Ni) resistance and biogeochemical cycles involving functional KEGG orthology varied in samples from plate-tectonic plains and mining activity sites. The bipartite plot showed that the enrichment of the biogeochemical cycle and heavy metal resistance functional genes correlated with the abundance of serpentine mineralosphere bacterial groups at a 0.005% confidence level. The co-occurrence network plot revealed that the interconnection pattern of the indigenous bacterial assemblies changed in different plate-tectonic plains and mining exposure areas. Finally, this study concluded that due to heavy metal release, the variation in bacterial assemblies, their functioning, and intercommunity co-occurrence patterns were clarified the synergetic effect of mineral-microbial geochemical weathering process in serpentine mining areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.113802DOI Listing

Publication Analysis

Top Keywords

plate-tectonic plains
20
plains mining
20
heavy metal
20
bacterial assemblies
16
mining exposure
12
metal release
12
serpentine mineralosphere
12
exposure areas
8
mineral-microbial geochemical
8
geochemical weathering
8

Similar Publications

Heavy metal release from harsh ultramafic settings influences microbial diversity and function in soil ecology. This study aimed to determine how serpentine mineralosphere bacterial assemblies and their functions differed in two different plate-tectonic plains and mining exposure sites under heavy metal release conditions. The results showed that the Proteobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, and Chloroflexi were the most abundant bacterial groups among all the sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!