Theophylline-regulated pyrolysis synthesis of nitrogen-doped carbon nanotubes with iron-cobalt nanoparticles for greatly boosting oxygen reduction reaction.

J Colloid Interface Sci

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China. Electronic address:

Published: November 2022

At present, construction of economical, efficient and stable electrocatalysts for oxygen reduction reaction (ORR) is critical to alleviate the energy shortage. Theophylline (THP) can be easily extracted from natural plants, whose nitrogen atoms can chelate with metal ions. With assistance of THP, FeCo alloy was confined in N-doped carbon nanotubes (FeCo/NCNTs-800) by one-step pyrolysis of a mixture of the metal precursors, g-CN and THP. The resulting FeCo/NCNTs-800 showed a better ORR performance (onset potential, E = 1.09 V; half-wave potential, E = 0.87 V) than commercial Pt/C (50 wt%) in a 0.1 M KOH solution, with a limiting current density as high as -5.54 mA cm. This work offers a feasible strategy for developing transitional bimetal-based carbon catalysts in alkaline fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.06.130DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
8
oxygen reduction
8
reduction reaction
8
theophylline-regulated pyrolysis
4
pyrolysis synthesis
4
synthesis nitrogen-doped
4
nitrogen-doped carbon
4
nanotubes iron-cobalt
4
iron-cobalt nanoparticles
4
nanoparticles greatly
4

Similar Publications

Carbon nanomaterials (CNMs), such as carbon nanotubes (CNTs), graphene quantum dots (GQDs), and carbon quantum dots (CQDs), are prevalent in biological systems and have been widely utilized in applications like environmental sensing and biomedical fields. While their presence in human matrices is projected to increase, the interfacial interactions between carbon-based nanoscopic platforms and biomolecular systems continue to remain underexplored. In this study, we investigated the effect of gelatin-sourced CQDs on the globular milk protein beta-lactoglobulin (BLG).

View Article and Find Full Text PDF

Breast cancer (BC) has a prevalence rate of 21.8% among Saudi women and ranks as the third leading cause of death in Western nations. Nanotechnology offers innovative methods for targeted BC therapy, and this study explores the use of single-walled carbon nanotubes (SWCNTs) for delivering the senna leaf extract.

View Article and Find Full Text PDF

Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.

View Article and Find Full Text PDF

Herein, multi-walled carbon nanotubes (CNT) embedded with RuPdIrPtAu-high entropy alloys (HEA) via pulsed laser irradiation in liquids are successfully fabricated. The resultant composite synergistically enhances hydrazine oxidation reaction (HzOR)-boosted water electrolysis. Notably, HEA with ≈2-5 nm size, are uniformly distributed across the surface of the CNTs.

View Article and Find Full Text PDF

The synthesis of an iron tailings-based geopolymer with synergistic electromagnetic wave consumption property.

Environ Res

January 2025

School of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China; Zijin School of Geology and Mining, Fuzhou University, Fuzhou, Fujian, 350108, China; Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou University, Fuzhou, Fujian 350108, China.

In this study, combination of wave absorption materials with different loss mechanisms are added into iron ore tailings-blast furnace slag (IOT-BFS) based geopolymers. The employed materials are hollow glass microsphere (HGM), carbon nanotubes (CNT) and carbonyl iron powder (CIP). Microstructures of the geopolymers are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and concrete porous structure analyzer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!