This study investigated whether the molecular mechanism of granule protein 16 (GRA16), a dense granule protein of Toxoplasma gondii (T. gondii) that induces cancer cell apoptosis, results in telomere shortening in cancer cells. The molecular mechanism of GRA16 responsible for regulating telomerase reverse transcriptase (hTERT) activity and telomere shortening was investigated using GRA16-transferred HCT116 human colorectal cancer cells (GRA16-stable cells). GRA16 directly decreased hTERT expression by downregulating the expression and phosphorylation of hTERT transcriptional factors accompanied by decreased expression of shelterin complex molecules. Moreover, GRA16 resulted in cancer cell death through reduction of telomerase activity which leads to telomere shortening (decreased relative ratio of telomeric repeat-amplified sequence to that of a single-copy gene) (T/S ratio)), and at the same time gamma-H2A histone family member X (γ-H2A.X) stained nucleus was increased in the cells. The molecular mechanism between GRA16 and hTERT inactivation was revealed using inhibitors for phosphatase and tensin homolog (PTEN) and protein phosphatase 2A (PP2A) as well as siRNAs against PTEN and PP2A. hTERT dephosphorylation was induced effectively by the signaling pathway of HAUSP/PTEN/p-AKT(S473) but not by PP2A-B55/p-AKT(T308). Inhibition of the PTEN signaling pathway increased mRNA expressions in hTERT transcriptional factors, cell cycle activating factors, and apoptosis-inhibiting factors. When HCT116 cells were infected with T. gondii, the number of γ-H2A.X-stained nuclei also increased and p-hTERT/hTERT decreased as in GRA16-stable cells. Altogether, our results emphasize that GRA16 is a novel promising telomerase inhibitor that causes telomere shortening through telomerase inactivation by inducing the activation of the tumor suppressor PTEN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2022.113366 | DOI Listing |
Nat Commun
January 2025
Sorbonne Université, CNRS, Laboratory of Computational and Quantitative Biology, LCQB, Paris, France.
Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.
View Article and Find Full Text PDFNutrients
January 2025
Department of Nutrition, Food Sciences and Physiology, Center for Nutrition and Research, University of Navarra, 31008 Pamplona, Spain.
Background And Aim: Telomere length (TL) is a key biomarker of cellular aging, with shorter telomeres associated with age-related diseases. Lifestyle interventions mitigating telomere shortening are essential for preventing such conditions. This study aimed to examine the effects of two weight loss dietary strategies, based on a moderately high-protein (MHP) diet and a low-fat (LF) diet on TL in individuals with overweight or obesity.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA.
Background/objectives: As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
: Aging is associated with structural and functional changes in the heart, including hypertrophy, fibrosis, and impaired contractility. Cellular mechanisms such as senescence, telomere shortening, and DNA damage contribute to these processes. Nuclear factor kappa B (NF-κB) has been implicated in mediating cellular responses in aging tissues, and increased NF-κB expression has been observed in the hearts of aging rodents.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
About one out of two diabetic patients develop diabetic neuropathy (DN), of these 20% experience neuropathic pain (NP) leading to individual, social, and health-economic burden. Risk factors for NP are largely unknown; however, premature aging was recently associated with several chronic pain disorders. DNA methylation-based biological age (DNAm) is associated with disease risk, morbidity, and mortality in different clinical settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!