A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 980
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3077
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evolution of harmful algal blooms in the East China Sea under eutrophication and warming scenarios. | LitMetric

Evolution of harmful algal blooms in the East China Sea under eutrophication and warming scenarios.

Water Res

CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

Published: August 2022

Harmful algal blooms (HABs) worldwide are experiencing obvious changes under the combined impacts of global warming, eutrophication, and other driving forces. In the East China Sea (ECS), large-scale blooms caused by dinoflagellates occurred since 2000 and there has been an apparent shift of bloom-causative microalgae from diatoms to dinoflagellates. To predict the future evolution of HABs in this region, a model was developed based on the competition between diatoms and dinoflagellates, which would serve to reproduce the seasonal succession of microalgal blooms driven by multiple environmental factors. The evolution features of HABs were then projected under different scenarios of eutrophication and global warming. Under the 'business as usual' scenario, dinoflagellate blooms are expected to become more frequent with higher peak biomass concentrations over the next 30 years. Changes in nutrient composition of the Changjiang riverine discharge may largely give rise to this phenomenon, and accelerated warming associated with climate change may result in earlier occurrence of dinoflagellate blooms. To prevent further intensification of dinoflagellate blooms, efforts could be made to reduce nitrogen inputs and maintain or even increase silicate inputs from the Changjiang river.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118807DOI Listing

Publication Analysis

Top Keywords

dinoflagellate blooms
12
harmful algal
8
algal blooms
8
east china
8
china sea
8
global warming
8
diatoms dinoflagellates
8
blooms
7
evolution harmful
4
blooms east
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!