Liposome-templated gold nanoparticles for precisely temperature-controlled photothermal therapy based on heat shock protein expression.

Colloids Surf B Biointerfaces

Engineering Research Center of Molecular, and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China. Electronic address:

Published: September 2022

Mild temperature photothermal therapy is gaining more and more attention due to high safety, high specificity and moderate efficacy. However, the therapeutical outcome of mild photothermal therapy is limited due to the overexpression of heat shock proteins (HSPs). Therefore, the precise management of HSP expression is the key to improvement of mild temperature photothermal therapy. However, the correlation between HSP expression and photothermal temperature in vivo is still unclear. To precisely control the photothermal temperature by managing the HSP expression, we quantified the HSP expression at different photothermal temperatures after irradiation on liposome-templated gold nanoparticles, which have high photostability, high photothermal conversion efficiency and low temperature fluctuation (smaller than 1 ℃). We found that the expression of HSP70 was least at 47 ℃, which was the optimal temperature for HSP management. We chose to co-administrate HSP70 inhibitor during 47 ℃ photothermal therapy, leading to greatly enhanced tumor inhibition. Our precise temperature-controlled photothermal therapy based on HSP expression offers a new strategy for clinical tumor photothermal therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2022.112686DOI Listing

Publication Analysis

Top Keywords

photothermal therapy
28
hsp expression
20
photothermal
11
liposome-templated gold
8
gold nanoparticles
8
temperature-controlled photothermal
8
therapy based
8
heat shock
8
mild temperature
8
temperature photothermal
8

Similar Publications

The resistance of cancer cells to apoptosis poses a significant challenge in cancer therapy, driving the exploration of alternative cell death pathways such as pyroptosis, known for its rapid and potent effects. While initial efforts focused on chemotherapy-induced pyroptosis, concerns about systemic inflammation highlight the need for precise activation strategies. Photothermal therapy emerges as a promising non-invasive technique, minimizing pyroptosis-related side effects by targeting tumors spatially and temporally.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs), known for their exceptional in situ encapsulation and precise release capabilities, are emerging as pioneering drug delivery systems. This study introduces a hypoxia-responsive COF designed to encapsulate the chemotherapy drug gambogic acid (GA) in situ. Bimetallic gold-palladium islands were grown on UiO-66-NH (UiO) to form UiO@Au-Pd (UAPi), which were encapsulated with GA through COF membrane formation, resulting in a core-shell structure (UAPiGC).

View Article and Find Full Text PDF

Polydopamine Coated Nonspherical Magnetic Nanocluster for Synergistic Dual Magneto-Photothermal Cancer Therapy.

Polymers (Basel)

December 2024

NanoMag Lab, Department of Applied Physics, Faculty of Science University of Granada, Planta-1, Edificio I+D Josefina Castro, Av. de Madrid, 28, 18012 Granada, Spain.

Local hyperthermia is gaining considerable interest due to its promising antitumor effects. In this context, dual magneto-photothermal cancer therapy holds great promise. For this purpose, the use of nanomaterials has been proposed.

View Article and Find Full Text PDF

Carbon-based nanozymes for cancer therapy and diagnosis: A review.

Int J Biol Macromol

January 2025

Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran. Electronic address:

Carbon-based nanozymes (CNs) have emerged as a significant innovation in targeted cancer therapy, demonstrating great potential for advancing cancer diagnosis and treatment. With exceptional catalytic properties, remarkable biocompatibility, and the ability to precisely target cancer cells, CNs provide a promising avenue for the development of novel oncological therapies. By functionalizing their surfaces with targeting ligands, such as antibodies or peptides, CNs can specifically recognize and bind to cancer cells.

View Article and Find Full Text PDF

Recombinant collagen microneedles for transdermal delivery of antibacterial copper-DNA nanoparticles to treat skin and soft tissue infections.

J Control Release

January 2025

School of Pharmacy, Changzhou University, Changzhou 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou 213164, PR China. Electronic address:

Skin and soft tissue infections (SSTI) include bacterial infections of the skin, muscles, and connective tissue such as ligaments and tendons. SSTI in patients with immunocompromising diseases may lead to chronic, hard-to-heal infected wounds, resulting in disability, amputation, or even death. To treat SSTI and rebuild the defensive barrier of the skin, here we utilize recombinant type XVII collagen protein (rCol XVII) to construct biodegradable, regenerative collagen microneedles (rCol-MN) for transdermal delivery of antibacterial agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!