Surface-based tracking for short association fibre tractography.

Neuroimage

Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Rd, Cardiff CF24 4HQ, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.

Published: October 2022

It is estimated that in the human brain, short association fibres (SAF) represent more than half of the total white matter volume and their involvement has been implicated in a range of neurological and psychiatric conditions. This population of fibres, however, remains relatively understudied in the neuroimaging literature. Some of the challenges pertinent to the mapping of SAF include their variable anatomical course and proximity to the cortical mantle, leading to partial volume effects and potentially affecting streamline trajectory estimation. This work considers the impact of seeding and filtering strategies and choice of scanner, acquisition, data resampling to propose a whole-brain, surface-based short (≤30-40 mm) SAF tractography approach. The framework is shown to produce longer streamlines with a predilection for connecting gyri as well as high cortical coverage. We further demonstrate that certain areas of subcortical white matter become disproportionally underrepresented in diffusion-weighted MRI data with lower angular and spatial resolution and weaker diffusion weighting; however, collecting data with stronger gradients than are usually available clinically has minimal impact, making our framework translatable to data collected on commonly available hardware. Finally, the tractograms are examined using voxel- and surface-based measures of consistency, demonstrating moderate reliability, low repeatability and high between-subject variability, urging caution when streamline count-based analyses of SAF are performed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10009610PMC
http://dx.doi.org/10.1016/j.neuroimage.2022.119423DOI Listing

Publication Analysis

Top Keywords

short association
8
white matter
8
surface-based tracking
4
tracking short
4
association fibre
4
fibre tractography
4
tractography estimated
4
estimated human
4
human brain
4
brain short
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!