The high mobility of As(III) makes it difficult to remediate heavily As(III)-contaminated soil. A novel remediation technique that combines pre-oxidation and stabilization/solidification (PO + S/S) is proposed in this study to remediate heavily As(III)-contaminated soil. After oxidizing As(III) in the contaminated soil using Fenton's reagent, FeCl·6HO was used as a chemical stabilizing agent to reduce the toxicity and mobility of As. Finally, Portland cement (PC) was used for solidification. The effects and mechanisms of the proposed technique were studied using unconfined compressive strength tests, leaching tests, sequential extraction procedure (SEP), and a series of spectroscopic/microscopic investigations. The experimental results showed that the addition of FeCl·6HO increased the strength of the curing body because the hydration degree of PC and pore structure were improved. Portland cement can increase the pH of the curing body. At a 1:1 Fe to As molar ratio and a 15 wt% PC dosage, the leached As concentration decreased to 3.25 mg L, and the remediation efficiency reached 99.54%. The SEP results showed that the PO + S/S treatment converted As into more stable phases and effectively reduced the potential mobile phase risk. The majority of As was bound to hydrated iron oxides; however, the increased pH affected the Fe-As interactions and prompted the release of As from the surface of the hydrated iron oxides. Spectroscopic/microscopic investigations indicated that the PO + S/S treatment converted As(III) to less toxic and less mobile As(V) and then immobilized by the encapsulation of calcium silicate hydrate and ion exchange of ettringite. This study provides a scientific basis and theoretical support for the effective remediation of heavily As(III)-contaminated soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.135598 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!