Drought stress drives sex-specific differences in plant resistance against herbivores between male and female poplars through changes in transcriptional and metabolic profiles.

Sci Total Environ

Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China. Electronic address:

Published: November 2022

Drought stress poses adverse influence on plant growth and further alters plant-herbivore interactions. Such effect is enhanced as drought occurrence is reported to increase due to global warming. Although dioecious plant species have shown sex-specific response to drought stress through the changes in growth performance and stress tolerance, whether such changes will drive sex-specific differences in defense against herbivores between male and female plant conspecifics is barely studied. In the current study, female and male poplar full-siblings were submitted to moderate (75 % field water capacity) and severe drought (50 % field water capacity) stresses, followed by herbivore growth and feeding bioassays to test the effect of plant gender on herbivore growth and feeding performance of two specialist and two generalist leaf herbivores. The results showed that although the growth of both plant sexes was inhibited by the two drought levels, male plants performed better than female conspecifics. In the paired-choice bioassays, the specialist herbivores preferred female plants while the generalist herbivores fed more on the male plants without drought stress. Both the moderate and severe drought stresses reversed such preferences. In the triple-choice bioassays, the specialist herbivores preferred female control plants while the generalist herbivores fed more on female plants under severe drought. In addition, the specialist herbivores fed on female plants from severe drought stress grew the worst while the generalist herbivores gained the highest fresh weight. The transcriptomic and metabolomic profiling revealed that female plant leaves contained higher levels of flavonoids than males under control condition while severe drought stress remarkably reduced the levels of defensive metabolites such as flavonoids, isoflavonoids, neoflavonoids and alkaloids in female but not in male plant leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157171DOI Listing

Publication Analysis

Top Keywords

drought stress
24
severe drought
20
specialist herbivores
12
female plants
12
generalist herbivores
12
herbivores fed
12
drought
11
female
10
herbivores
9
sex-specific differences
8

Similar Publications

RPT: An integrated root phenotyping toolbox for segmenting and quantifying root system architecture.

Plant Biotechnol J

March 2025

National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.

The dissection of genetic architecture for rice root system is largely dependent on phenotyping techniques, and high-throughput root phenotyping poses a great challenge. In this study, we established a cost-effective root phenotyping platform capable of analysing 1680 root samples within 2 h. To efficiently process a large number of root images, we developed the root phenotyping toolbox (RPT) with an enhanced SegFormer algorithm and used it for root segmentation and root phenotypic traits.

View Article and Find Full Text PDF

Functional identification of mango MiGID1A and MiGID1B genes confers early flowering and stress tolerance.

Plant Sci

March 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004; Guangxi, China. Electronic address:

The GIBBERELLIN INSENSITIVE DWARF1 (GID1) gene encodes a receptor integral to Gibberellic acid (GA) signaling, which is pivotal for plant growth, development, and stress responses. Until now, GID1 genes have not been documented in mango. In this research, the mango (Mangifera indica) genome yielded four GID1 homologous genes, and this study focuses on the research of MiGID1A and MiGID1B genes.

View Article and Find Full Text PDF

Genome-wide identification and characterization of CsHSP60 gene family associated with heat and drought responses in tea plants (Camellia sinensis).

Plant Physiol Biochem

March 2025

Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Tea Green Cultivation and Processing Collaborative Innovation Center, Anxi County, Quanzhou, 362400, China; Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. Electronic address:

Heat and drought are the stressors with significant adverse impacts on the yield stability of tea plants. The heat shock proteins 60 (HSP60s) play important roles in protecting plants under heat stress. However, the mechanism of HSP60s under heat and drought stresses remains unclear.

View Article and Find Full Text PDF

Saline irrigation improves survival of forage sorghum but limits growth and increases toxicity.

Plant Biol (Stuttg)

March 2025

School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.

Moderately saline water has been proposed as a potential irrigation resource for crops such as forage sorghum (Sorghum bicolor × Sorghum bicolor nothosubsp. drummondii) in drought-prone regions. However, it is not yet fully understood how salinity affects growth and potential toxicity of sorghum.

View Article and Find Full Text PDF

Evolutionary and functional analysis of the DIR gene family in Moso bamboo: insights into rapid shoot growth and stress responses.

Front Plant Sci

February 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, China.

Dirigent (DIR) proteins are key regulators of lignin and lignan biosynthesis and play critical roles in plant hormone responses, abiotic stress tolerance, and growth and development. This study identified and characterized 47 genes in Moso bamboo, classifying them into three groups. Phylogenetic and comparative analyses revealed strong evolutionary conservation, with the Moso bamboo genes being most closely related to those in rice and maize.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!