Auxin is involved in stress responses of plants, such as phosphorus (P) deficiency in rice. Studies on whether auxin participates in cell-wall inorganic phosphorous (Pi) reutilization in Pi-starved rice are scarce. This study explored the mechanisms underlying auxin-facilitated cell-wall Pi-reutilization in rice roots. Pi deficiency rapidly induced auxin accumulation in roots; exogenous auxin [α-naphthaleneacetic acid (NAA), a permeable analog of auxin] elevated soluble Pi content in roots and shoots by increasing pectin content by enhancing activity of pectin methylesterase, and upregulating the transcript level of PHOSPHORUS-TRANSPORTER-2, such that more Pi was translocated to the shoot. Irrespective of the Pi status, exogenous auxin induced nitric oxide (NO) and ethylene production, while exogenous sodium nitroprusside (an NO donor) and 1-aminocyclopropane-1-carboxylic acid (a precursor of ethylene) had no effect on auxin content, suggesting that auxin may act upstream of NO and ethylene. The beneficial effect of NAA in increasing soluble Pi content in roots and shoots disappeared when 2-(4-carboxyphenyl)- 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (a scavenger of NO) or aminoethoxyvinylglycine (an inhibitor of ethylene) were applied, suggesting that auxin facilitates cell-wall Pi-reutilization in a NO-ethylene-dependent manner in Pi-deficient rice. Our study results suggest auxin application as an effective agronomic practice for improving plant Pi nutrition in P-deficient conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2022.111371 | DOI Listing |
Planta
January 2025
College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).
View Article and Find Full Text PDFPlanta
January 2025
Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil.
Both, Serendipita indica and AMF, show promise as sustainable biofertilizers for reforestation, improving nutrient uptake and stress tolerance, despite contrasting effects on photosynthetic capacity and biomass allocation. Reclaiming degraded areas is essential for biodiversity conservation and enhancing ecosystem services enhancement, especially when using native species. This study investigated Schinus terebinthifolius Raddi, a native Brazilian species, and its compatibility with plant growth-promoting microorganisms (PGPM), including an endophytic fungus (Serendipita indica) and a consortium of arbuscular mycorrhizal fungi (AMF), to identify effective strategies for reforestation in nutrient-poor environments.
View Article and Find Full Text PDFHortic Res
January 2025
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193.
Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil.
Moniliophthora perniciosa is the causal agent of the witches' broom disease of cacao (Theobroma cacao), and it can infect the tomato (Solanum lycopersicum) 'Micro-Tom' (MT) cultivar. Typical symptoms of infection are stem swelling and axillary shoot outgrowth, whereas reduction in root biomass is another side effect. Using infected MT, we investigated whether impaired root growth derives from hormonal imbalance or sink competition.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
The C type of dicotyledonous plants exhibit a higher density of reticulate veins than the C type, with a nearly 1:1 ratio of mesophyll cells (MCs) to bundle sheath cells (BSCs). To understand how this C-type cell pattern is formed, we identified two SCARECROW (SCR) genes in C Flaveria bidentis, FbSCR1 and FbSCR2, that fully or partially complement the endodermal cell layer-defective phenotype of Arabidopsis scr mutant. We then created FbSCRs promoter β-glucuronidase reporter (GUS) lines of F.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!