The objective of this work is to study the toxicological effect of the imidacloprid (IMD) on common bean plants (Phaseolus vulgaris L) when used at high doses and its quantification by electrochemical method. Common bean plants were exposed to increasing concentrations of IMD and the different plant tissues were subjected to various analyses. The IMD detection in different tissues of the bean plant was performed after extraction on the metallic silver electrode using square wave voltammetry. The analytical and calibration parameters (Slope, correlation coefficient, linear range, detection limit and relative standard deviation) were calculated for the different plant tissues. The effect of different doses (5.0 × 10 to 5.0 × 10 mol L) of IMD was evaluated on germination, seedling (vigour, growth) and photosynthetic pigments in the bean plant. The results indicate that germination rate and seed vigour index reduced significantly (p ≤ 0.05) only in the applied concentrations above the recommended dose. A similar effect of IMD was observed on seedling development in term of roots length, plant length, number of leaves and number of nods. Concerning pigments content, chlorophyll a, b and total chlorophyll maximally decreased by 95.26%, 80.44% and 82.15% respectively at high applied dose. The bioaccumulation and translocation behaviour of IMD in bean plant was investigated, revealing that the IMD can be bioaccumulated in roots and can easily be translocated into stems and leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.113794DOI Listing

Publication Analysis

Top Keywords

bean plant
12
phaseolus vulgaris
8
bioaccumulation translocation
8
common bean
8
bean plants
8
plant tissues
8
plant
7
imd
7
bean
5
phytotoxic insecticide
4

Similar Publications

As a primary abiotic constraint for bean cultivation in semi-arid regions, drought stress significantly impacts both the yield and quality of beans. Foliar application of nanofertilizer has been shown to effectively improve crop yield and nutritional quality while mitigating environmental pollution associated with fertilizer runoff. In this study, we conducted a semi-field study using magnetite nanoparticles (FeONPs) to evaluate its effects on the growth, yield, nutrient quality, photosynthetic parameters, and physiological traits in kidney bean (Phaseolus vulgaris L.

View Article and Find Full Text PDF

The common bean (Phaseolus vulgaris L.) plays a significant economic and social role in Brazil. However, the national average yield remains relatively low, largely because most bean cultivation is undertaken by small-scale farmers.

View Article and Find Full Text PDF

a β-proteobacterium, forms a nitrogen-fixing symbiosis with many species of the large legume genus as well as with common bean ( L.). are considered to have evolved nodulation independently from the well-studied α-proteobacteria symbionts of legumes.

View Article and Find Full Text PDF

The present study investigated the properties of galactomannan, a water-soluble polysaccharide extracted from the Prosopis farcta (Çeti) plant. These properties encompassed its functional characteristics, chemical composition, rheological behavior, and morphological structure. The results were systematically compared with those of the commercially utilized locust bean gum (LBG).

View Article and Find Full Text PDF

Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!