Stem Cell-Derived Exosomes: A New Method for Reversing Skin Aging.

Tissue Eng Regen Med

Department of Dermatology, Huashan Hospital, Fudan University, No. 12, middle Urumqi Road, Shanghai, 200040, China.

Published: October 2022

Senescence is an inevitable natural life process that involves structural and functional degeneration of tissues and organs. Recently, the process of skin aging has attracted much attention. Determining a means to delay or even reverse skin aging has become a research hotspot in medical cosmetology and anti-aging. Dysfunction in the epidermis and fibroblasts and changes in the composition and content of the extracellular matrix are common pathophysiological manifestations of skin aging. Reactive oxygen species and matrix metalloproteinases play essential roles in this process. Stem cells are pluripotent cells that possess self-replication abilities and can differentiate into multiple functional cells under certain conditions. These cells also possess a strong ability to facilitate tissue repair and regeneration. Stem cell transplantation has the potential for application in anti-aging therapy. Increasing studies have demonstrated that stem cells perform functions through paracrine processes, particularly those involving exosomes. Exosomes are nano-vesicular substances secreted by stem cells that participate in cell-to-cell communication by transporting their contents into target cells. In this chapter, the biological characteristics of exosomes were reviewed, including their effects on extracellular matrix formation, epidermal cell function, fibroblast function and antioxidation. Exosomes derived from stem cells may provide a new means to reverse skin aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477989PMC
http://dx.doi.org/10.1007/s13770-022-00461-5DOI Listing

Publication Analysis

Top Keywords

skin aging
20
stem cells
16
reverse skin
8
extracellular matrix
8
cells
8
cells possess
8
stem
6
exosomes
5
skin
5
aging
5

Similar Publications

When cellular ageing is accelerated by various extrinsic/endogenous stimuli, regenerative function deteriorates, and enriched secretomes, such as the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and cause matrix degeneration. SASPs from senescent fibroblasts exacerbate cellular senescence via autocrine signalling and also accelerate skin ageing through the induction of neighbouring cell senescence via paracrine signalling. The interaction between dermis fibroblasts and their neighbours, adipose-derived stem cells (ADSCs) in the hypodermis, which lies deep in the dermis, is a potential target for skin ageing.

View Article and Find Full Text PDF

Platelet-rich plasma alleviates skin photoaging by activating autophagy and inhibiting inflammasome formation.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Dermatology, Dongshan Hospital, Guofengyuan Building, Xuezi Avenue, Meijiang District, Meizhou, 514011, Guangdong, China.

Platelet-rich plasma (PRP) holds promising prospects for the treatment of skin photoaging. This study aims to unravel the mechanism underlying PRP's anti-photoaging properties. Partial skin of rats was irradiated with ultraviolet (UV) and injected with PRP, and the skin appearance, pathological state, and aging conditions were determined.

View Article and Find Full Text PDF

Evaluation of the Effect of Exosomes From Adipose Derived Stem Cells on Changes in GSH/ROS Levels During Skin Photoaging.

Photodermatol Photoimmunol Photomed

January 2025

Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, China.

Objective: Exosomes (Exos) from adipose derived stem cells (ADSCs) can delay skin photoaging, but their effects on reactive oxygen species (ROS) remains unclear. This study aimed to investigate the relationship between adipose derived stem cell exosomes (ADSCs-Exos) in anti-photoaging of skin and glutathione (GSH)/ ROS expression in human fibroblasts.

Methods: A skin photoaging model was established by irradiating human fibroblasts with ultraviolet B (UVB) light in vitro.

View Article and Find Full Text PDF

The role of the infrapatellar fat pad (IPFP) in knee osteoarthritis is not understood. This study aimed to identify relationships between MRI-based signal abnormalities in the IPFP and measures of structural pathology and symptom severity in PFJOA, as well as investigate the influence of obesity and sex on these relationships. Seventy participants (ages 28-80) with isolated PFJOA underwent bilateral knee MRI scan acquisitions and completed the Knee Injury and Osteoarthritis Outcome Score (KOOS).

View Article and Find Full Text PDF

Background And Objectives: Intraperitoneal injection (i.p.) of D-galactose (D-gal) accelerates aging and develops aging models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!