As a kind of solid waste with a high silicon content, electrolytic manganese residue (EMR) can be utilized as silicon source by plants through bioleaching processes. EMR contains a variety of silicate minerals. In order to determine the source of available silicon in the bioleaching process of EMR, it is necessary to investigate the influence of silicate minerals in EMR on silicon-activating behavior of specific minerals. In this study, Ochrobactium sp. T-07-B was used to conduct bioleaching experiments on five kinds of silicate minerals with different structures (quartz, muscovite, biotite, olivine, and rhodonite); the growth of Ochrobactium sp. T-07-B, their acid- and polysaccharide-producing capacity, and evolution of surface morphology and structure of the silicate minerals in different systems were determined, so as to explore the silicon-activating capacity of Ochrobactium sp. T-07-B and the selectivity toward different minerals in the bioleaching process. Results showed that the effects of Ochrobactium sp. T-07-B for different silicate minerals were obviously different, and the sequence of silicon-activating efficiency from high to low was as follows: muscovite (65.84 mg·L) > biotite (63.84 mg·L) > olivine (55.76 mg·L) > rhodonite (50.98 mg·L) > quartz (23.63 mg·L). Results of this study may be of guiding significance for the future research on the silicon-activating behavior of solid waste.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-21824-4 | DOI Listing |
Molecules
February 2025
Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
Compared to conventional adsorbents, zinc-based metal-organic frameworks (MOFs) such as zeolite imidazolium skeleton-8 (ZIF-8) exhibit enhanced thermal, chemical, and structural stability. Nonetheless, their powdered form results in limited dispersibility in aqueous solutions and a tendency to aggregate, which significantly restricts their utility in adsorption applications. This study reports a green composite aerogel through the in situ mineralization of ZIF-8 onto bacterial cellulose (BC) for the effective removal of toxic metal ions (Cu) and Congo red (CR) from wastewater.
View Article and Find Full Text PDFAnal Chim Acta
May 2025
Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, PR China. Electronic address:
The sensitive, efficient, and simultaneous assay of creatinine and urea in different body fluid is crucial for the daily detection and treatment of chronic kidney disease. Here, we exploited a versatile composite surface enhanced Raman scattering (SERS) substrate of polydimethylsiloxane (PDMS)-flower-like ZIF-67@Ag nanoparticles (NPs) based on simple in-situ growth and ion sputtering strategies. The plasmonic Ag NPs assembled on the three-dimensional anisotropic ZIF-67 matrix, facilitating numerous resonant electromagnetic "hotspots".
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2025
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
Advancing durable solutions for carbon storage and removal at the gigaton scale to produce solid carbonates carbon mineralization requires harnessing earth abundant magnesium silicate resources. Calibrated insights linking the structural and morphological features of earth abundant amorphous and crystalline magnesium silicate phases to their reactivity are essential for scalable deployment but remain underdeveloped. To resolve the influence of silica coordination and mass transfer on carbon mineralization behavior, magnesium silicates bearing amorphous and crystalline phases (AC Mg-silicate) are synthesized.
View Article and Find Full Text PDFSci Rep
March 2025
Hydrogeochemistry Department, Desert Research Center, 1-Mathaf El Mataryia St., El Mataryia, Cairo, Egypt.
The study area is located in a hyper arid area in the Western Egyptian Desert, which represents a massive agricultural project where irrigation water is extracted from the Nubian sandstone aquifer. This study focuses on the hydrogeochemical processes and its impact on the quality of the groundwater aquifer. Based on the geomorphology, the study area includes five geomorphological units, Wadi Kurkur bediplain, Aswan High Dam Lake, the Nile Valley, the West Dungul plain, and basement outcrops.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA.
Rationale: Stable oxygen isotope measurements in silicate clays, such as smectite and kaolinite, provide crucial information for understanding Earth's climate history and environmental changes. Despite a growing interest in the oxygen isotope analysis of silicate clays and clay-rich sediments, there lacks a consensus on the preparation and standardization of clay mineral samples. To improve the accuracy and interlaboratory comparisons of clay isotope measurements, especially those involving laser fluorination techniques, newly established kaolinite and smectite oxygen isotope standards are much needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!