The goal of the current article was to obtain data regarding the application of a series of grafted pullulan derivatives, as flocculating agents, for removal of some pesticide formulations from model wastewater. The pullulan derivatives are cationic polyelectrolytes, with various content and length of grafted poly[(3-acrylamidopropyl)-trimethylammonium chloride] chains onto the pullulan (P--pAPTAC)]. The commercial pesticides are either fungicide (Bordeaux Mixture) () or insecticides (Decis ()-active ingredient Deltamethrin, Confidor Oil ()-active ingredient Imidacloprid, Confidor Energy ()-active ingredients Deltamethrin and Imidacloprid and Novadim Progress ()-active ingredient Dimethoate). The removal efficiency has been assessed by UV-Vis spectroscopy measurements as a function of some parameters, namely polymer dose, grafted chains content and length, pesticides concentration. The P--pAPTAC samples showed good removal efficacy at dose, more than 94% for , between 84 and 90% for , and and around 93% for . The maximum percentage removal decreased with the pesticides (, , , ) concentration declining; no effect of concentration in suspension on its removal efficiency process has been noted. Differences indicated by zeta potential and particle size distribution measurements regarding the pesticides removal mechanisms by pullulan derivatives (charge neutralization, bridging, etc.) are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269221 | PMC |
http://dx.doi.org/10.3390/polym14132663 | DOI Listing |
Biomolecules
January 2025
Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy.
In recent years, fungal infections have emerged as a significant health concern across veterinary species, especially in livestock such as cattle, where fungal diseases can result in considerable economic losses, as well as in humans. In particular, species, notably and , are opportunistic pathogens that pose a threat to both animals and humans. This study focuses on the synthesis and antifungal evaluation of novel 9-fluorenylmethoxycarbonyl (Fmoc)-protected 1,2,4-triazolyl-α-amino acids and their dipeptides, designed to combat fungal pathogens.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, D-07743 Jena, Germany; Jena Center for Soft Matters (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany. Electronic address:
Nanomedicine, particularly gene delivery, holds immense potential and offers promising therapeutic options. Non-viral systems gained attention due to their binding capacity, stability and scalability. Among these, natural polysaccharides, such as pullulan, are advantageous in terms of sustainability, biocompatibility and potential degradability.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Division of Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany. Electronic address:
Curcumin, a hydrophobic drug derived from the rhizome of Curcuma longa, exhibits significant bioactive properties, including antioxidant and antimicrobial potential. However, its poor water solubility and rapid degradation limit its practical applications. This study presents a novel design of electrospun nanofibers using curcumin/hydroxypropyl-β-cyclodextrin inclusion complex (HP-β-CD-IC) combined with pullulan to enhance thermal stability and controlled release.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland.
The aim of this study was to develop and optimize polymeric films based on cellulose derivatives-hydroxypropylmethylcellulose (HPMC), methylcellulose (MC), and sodium carboxymethylcellulose (NaCMC)-as well as pullulan, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and glycerol (GLY) as plasticizer incorporating extract for potential use in periodontal and gum disease treatment. Over 80 formulations were fabricated using the solvent-casting method, 6 of which were selected for further investigation based on their mechanical properties, mucoadhesion, and disintegration profiles, including three placebo films (OP1 (PVA/PVP/MC400CP/NaCMC/GLY), OP2 (PVA/PVP/MCA15C/NaCMC/GLY), and OP3 (PVA/PVP/HPMC/NaCMC/GLY)) and three films containing extract (OW1, OW2, and OW3). The films demonstrated uniform structural characteristics, with the formulations containing PVA with a high hydrolysis degree (98-99%) and methylcellulose derivatives showing prolonged dissolution times due to physical cross-linking, while the inclusion of NaCMC reduced dissolution time without compromising mucoadhesiveness.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!