Fabrication of Wearable Transistor with All-Graphene Electrodes via Hot Pressing.

Polymers (Basel)

Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Korea.

Published: June 2022

AI Article Synopsis

  • Textile electronics are beneficial for creating flexible, lightweight, and wearable electronic devices.
  • This study focuses on wearable organic field-effect transistors (OFETs) that use all-graphene electrodes made through a hot pressing method.
  • The resulting electrodes showed excellent performance with low sheet resistance and high flexibility, enabling stable operation in the OFETs even after extensive bending cycles.

Article Abstract

Textile electronics are ideal for novel electronic devices owing to their flexibility, light weight, and wearability. In this work, wearable organic field-effect transistors (OFETs) with all-graphene electrodes, fabricated using hot pressing, are described. First, highly conductive and flexible electrodes consisting of a cotton textile substrate and electrochemically exfoliated graphene (EEG) were prepared via hot pressing. The EEG/textile electrodes exhibited a low sheet resistance of 1.3 Ω sq and high flexibility; these were used as gate electrodes in the wearable OFETs. In addition, spray-coated EEG was also used as the source/drain (S/D) electrodes of the wearable OFETs, which recorded a sheet resistance of 14.8 Ω sq after hot pressing. The wearable OFETs exhibited stable electrical performance, a field-effect mobility of 13.8 cm V s, and an on-off current ratio of ~10 during 1000 cycles of bending. Consequently, the fabrication method for wearable transistors developed using textiles and hot-pressed graphene electrodes has potential applications in next-generation wearable devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269206PMC
http://dx.doi.org/10.3390/polym14132602DOI Listing

Publication Analysis

Top Keywords

hot pressing
16
wearable ofets
12
all-graphene electrodes
8
sheet resistance
8
electrodes wearable
8
electrodes
7
wearable
6
fabrication wearable
4
wearable transistor
4
transistor all-graphene
4

Similar Publications

The effect of hot isostatic pressing (HIP) on the thermoelectric power factor of zinc oxide (ZnO) has been examined. ZnO is expected to be a potential n-type oxide thermoelectric material that could enhance the thermoelectric conversion efficiency. The HIP treatment is useful for densifying the material and controlling crystal defects in the material by applying high temperatures and pressures simultaneously.

View Article and Find Full Text PDF

Constructing a green modifier by using glyoxal-urea resin and chitosan to obtain a modified soy protein adhesive with high bonding strength and excellent water resistance.

Int J Biol Macromol

December 2024

Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China. Electronic address:

The manufacturing of soy-based adhesives with high bonding strength, excellent water resistance, and exceptional environmental performance still faces difficulties. In this work, using glyoxal-urea (GU) resin, chitosan (CS), and soy protein isolate (SPI) as the primary raw materials in order to effectively mitigate the release of free formaldehyde commonly found in traditional wood-based panels. Obtaining an adhesive with high strength, excellent water resistance, and a stable cross-linking structure of GU/CS/SPI (CS represents different mass fractions of chitosan solution).

View Article and Find Full Text PDF

Polylactic acid (PLA) composites with high straw content face several challenges, primarily due to the inherent brittleness of straw and its poor compatibility with the polymer matrix. In this study, scanning electron microscopy (SEM) was used to analyze the microscopic structure of wheat straw chemically modified by NaOH and the silane coupling agent, and it was concluded that both treatments effectively removed waxes and silica from the surface of the straw, enhanced fiber roughness, and improved interfacial adhesion. Notably, the silane coupling agent treatment not only facilitated the formation of chemical bonds between the straw fibers and the PLA matrix but also filled the interfiber pores, significantly increasing the structural density.

View Article and Find Full Text PDF

Rapid Sintering Method for Preparing Matrix-Matched Reference Materials in LA-MC-ICP-MS - An Example of Hafnium.

Anal Chem

December 2024

State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China.

Matrix effects can significantly bias Hf isotopic ratios in situ Hf isotope analyses using laser ablation (LA-) multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS), necessitating the use of matrix-matched reference materials for accurate microanalysis. This work introduces a novel fast hot-pressing (FHP) sintering method to produce such reference materials efficiently for in situ analysis. By optimizing sintering temperatures, FHP technology enables the rapid preparation of in situ analysis reference materials with dense structures and homogeneous Hf isotopic compositions.

View Article and Find Full Text PDF

Comparison of extraction and refinement techniques for volatile compound analysis in camellia oil.

Food Chem

December 2024

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China. Electronic address:

The processing techniques of camellia oil, containing freshly squeezed (FSCO), refined (DFCO), cold-pressed (OFCO), and hot-pressed (RFCO), significantly influence flavor compounds and organoleptic properties. In this study, the preference for FSCO and RFCO was revealed by sensory evaluation due to the "fruity" and "roasted" flavors, respectively. Flavor differences among oils were accurately distinguished by the E-nose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!