To increase the human lifespan, healthcare monitoring devices that diagnose diseases and check body conditions have attracted considerable interest. Commercial AgCl-based wet electrodes with the advantages of high conductivity and strong adaptability to human skin are considered the most frequently used electrode material for healthcare monitoring. However, commercial AgCl-based wet electrodes, when exposed for a long period, cause an evaporation of organic solvents, which could reduce the signal-to-noise ratio of biosignals and stimulate human skin. In this context, we demonstrate a dry electrode for a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based blended polymer electrode using a combination of PEDOT:PSS, waterborne polyurethane (WPU) and ethylene glycol (EG) that could be reused for a long period of time to detect electrocardiography (ECG) and electromyography (EMG). Both ECG and EMG are reliably detected by the wireless real-time monitoring system. In particular, the proposed dry electrode detects biosignals without deterioration for over 2 weeks. Additionally, a double layer of a polyimide (PI) substrate and fluorinated polymer CYTOP induces the strong waterproof characteristics of external liquids for the proposed dry electrodes, having a low surface energy of 14.49 mN/m. In addition, the proposed electrode has excellent degradability in water; it dissolves in hot water at 60 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269162PMC
http://dx.doi.org/10.3390/polym14132586DOI Listing

Publication Analysis

Top Keywords

blended polymer
8
dry electrodes
8
hot water
8
healthcare monitoring
8
commercial agcl-based
8
agcl-based wet
8
wet electrodes
8
human skin
8
long period
8
dry electrode
8

Similar Publications

Bioprinting has emerged as a powerful manufacturing platform for tissue engineering, enabling the fabrication of 3D living structures by assembling living cells, biological molecules, and biomaterials into these structures. Among various biomaterials, hydrogels have been increasingly used in developing bioinks suitable for 3D bioprinting for diverse human body tissues and organs. In particular, hydrogel blends combining gelatin and gelatin methacryloyl (GelMA; "GG hydrogels") receive significant attention for 3D bioprinting owing to their many advantages, such as excellent biocompatibility, biodegradability, intrinsic bioactive groups, and polymer networks that combine the thermoresponsive gelation feature of gelatin and chemically crosslinkable attribute of GelMA.

View Article and Find Full Text PDF

We report on 3D-printable polymer networks based on the combination of modified alginate-based polymer blends; two alginate polymers were prepared, namely, a thermoresponsive polymer grafted with P(NIPAM--NtBAM)-NH copolymer chains and a second polymer modified with diol/pH-sensitive 3-aminophenylboronic acid. The gelation properties were determined by the hydrophobic association of the thermosensitive chains and the formation of boronate esters. At a mixing ratio of 70/30 wt % of the thermo/diol-responsive polymers, the semi-interpenetrating network exhibited an optimum storage modulus ranging from ca.

View Article and Find Full Text PDF

Evaluation of rheological properties of guar gum-based fracturing fluids enhanced with hydroxyl group bearing thermodynamic hydrate inhibitors.

Int J Biol Macromol

December 2024

Department of Petroleum Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India. Electronic address:

Naturally occurring gas clathrates are a significant methane resource-the primary component of natural gas, regarded as the cleanest hydrocarbon and a key feedstock for producing gray and blue hydrogen. Despite the global abundance of gas hydrate reserves, extraction via depressurization has yet to achieve commercially viable production rates. The primary limitation lies in the low permeability of hydrate-bearing sediments, where solid clathrates obstruct porous pathways, hindering dissociation and slowing gas recovery.

View Article and Find Full Text PDF

This study investigates the effect of fibers from cotton and polyester textiles on the properties of fiber-reinforced polypropylene (PP) composites aimed at durable and load-bearing materials. Herein we developed a process-centered strategy to introduce 52 wt% of fibers within the thermoplastic matrix, while ensuring proper interfacial coupling. We examined the mechanical, thermal, and rheological properties of composite materials that integrated cotton and polyester waste fibers into PP matrices with different coupling agents.

View Article and Find Full Text PDF

Biochar reduces containerized pepper blight caused by Phytophthora Capsici.

Sci Rep

December 2024

Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80526, USA.

Phytophthora blight caused by Phytophthora capsici is a serious disease affecting a wide range of plants. Biochar as a soil amendment could partially replace peat moss and has the potential to suppress plant diseases, but its effects on controlling phytophthora blight of container-grown peppers have less been explored, especially in combination of biological control using Trichoderma. In vitro (petri dish) and in vivo (greenhouse) studies were conducted to test sugarcane bagasse biochar (SBB) and mixed hardwood biochar (HB) controlling effects on pepper phytophthora blight disease with and without Trichoderma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!