An experimental investigation on the resistance welding of carbon-fiber-reinforced polyetheretherketone (PEEK) composite laminate using three types of stainless steel (SS) meshes with different sizes and electrical resistances as heating elements is reported. The objective of this study is to determine the influence of the metal mesh on the welding process and performance at different power densities ranging from 29 to 82 kW/m. Resistance welding equipment is used to monitor the temperature and displacement along the thickness of the laminate. The results show that the power density determines the welding time and heat concentration. A large power density results in a short welding time, but also increases the temperature gradient at the joining interface (almost 50 °C) and causes an obvious deformation of a contraction of more than 0.1 mm along the thickness of the laminate. A SS mesh with low resistance has a strong welding capability, i.e., a high welding efficiency under low power density. A lap shear strength of approximately 35 MPa can be obtained with the appropriate power density. The shear strength is affected by the bonding between the metal mesh and polymer, the metal mesh load bearing, and the metal mesh size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269444PMC
http://dx.doi.org/10.3390/polym14132563DOI Listing

Publication Analysis

Top Keywords

metal mesh
20
power density
20
resistance welding
12
welding
8
thickness laminate
8
welding time
8
shear strength
8
mesh
6
power
6
metal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!