Isolation and Characterization Cellulose Nanosphere from Different Agricultural By-Products.

Polymers (Basel)

Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand.

Published: June 2022

Cellulose nanospheres (CN) have been considered a leading type of nanomaterial that can be applied as a strengthening material in the production of nanocomposites. This work aimed to isolate and characterize the properties of CN from different agricultural by-products. CNs were successfully isolated from rice straw, corncob, Phulae pineapple leaf and peel using acid hydrolysis (60% H2SO4) combined with homogenization-sonication (homogenized at 12,000 rpm for 6 min and ultrasonicated for 10 min). The results showed that the CN from rice straw (RS-CN) and corncob (CC-CN) exhibited high yields (22.27 and 22.36%) (p < 0.05). All hydrolyzed CNs exhibited a spherical shape with a diameter range of 2 to 127 nm. After acid hydrolysis, Fourier transform infrared (FTIR) results showed no impurities. X-ray diffraction (XRD) showed that the structure of cellulose was changed from cellulose-I to cellulose-II. However, cellulose-I remained in pineapple peel cellulose nanosphere (PP-CN). The crystalline index (CI) ranged from 43.98 to 73.58%, with the highest CI obtained in the CC-CN. The CN from all sources presented excellent thermal stability (above 300 °C). The functional properties, including water absorption Index (WAI), water solubility index (WSI) and swelling capacity were investigated. PP-CN showed the highest WAI and swelling capacity, while the PL-CN had the highest WSI (p < 0.05). Among all samples, CC-CN showed the highest extraction yield, small particle size, high CI, and desirable functional properties to be used as a material for bio-nanocomposites film.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269051PMC
http://dx.doi.org/10.3390/polym14132534DOI Listing

Publication Analysis

Top Keywords

cellulose nanosphere
8
agricultural by-products
8
rice straw
8
acid hydrolysis
8
functional properties
8
swelling capacity
8
isolation characterization
4
cellulose
4
characterization cellulose
4
nanosphere agricultural
4

Similar Publications

Cellulose nanostructures obtained from lignocellulosic biomass via enzymatic processes may offer advantages in terms of material properties and processing sustainability. Thus, in this study, cellulose nanoparticles with a spherical morphology were produced through the enzymatic hydrolysis of cashew apple bagasse (CAB). CAB was previously subjected to alkaline and acid-alkali pretreatment, and the pretreated solids were labeled as CAB-PTA and CAB-PT-HA, respectively.

View Article and Find Full Text PDF

Inspired by lotus leaf, biomimetic hydrophobic cellulose fiber-based textiles were usually fabricated by the lower surface energy materials. However, it is rare to witness a hydrophobic surface obtained by near infrared laser (NIR) irradiation a superhydrophilic nanomaterial, which remains a huge challenge. Herein, the CuS nanospheres was in-situ anchored on the surface of gallic acid self-polymer treated cotton fabric.

View Article and Find Full Text PDF

Superhydrophobic nanocellulose-based self-assembled flexible SERS substrates for pesticide detection.

Int J Biol Macromol

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Flexible surface-enhanced Raman scattering (SERS) substrates that provide simple sampling are helpful for the on-site detection of explosive contamination, pesticide residues on food surfaces, and water pollution in public spaces. Using superhydrophobic nanocellulose-based film as the support, 2D flexible SERS substrates that integrated sampling, enrichment, and detection were successfully fabricated via the solvent-induced evaporation method. This approach enabled the co-loading of two plasmonic nanoparticles with different sizes and shapes.

View Article and Find Full Text PDF

Excellent facile fabrication of PVA and lignin nanoparticles from wheat straw after novel DES-THF pretreatment.

Int J Biol Macromol

November 2024

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Science, Hubei University of Technology, Wuhan 430068, PR China. Electronic address:

Article Synopsis
  • The research focuses on creating environmentally friendly films by incorporating lignin nanospheres (LNPs) made from recovered lignin into polyvinyl alcohol (PVA) solution.
  • Results indicate that films with higher LNP content have improved UV blocking, antioxidant properties, and hydrophobicity, especially when lignin undergoes DES-THF pretreatment.
  • Ultimately, the study concludes that the PVA/LNPs composite films exhibit advantageous mechanical, thermal, and functional properties, making them suitable for packaging applications.
View Article and Find Full Text PDF

This study aimed to investigate the behavior of smart bilayer films under various temperature and relative humidity (RH). Smart bilayer films were fabricated using sodium alginate with incorporated butterfly pea anthocyanin and agar containing catechin-lysozyme. Cellulose nanospheres were added at concentrations of 0% and 10% w/w of the film and subjected to test at 4 °C and 25 °C, considering different RHs (0%, 50%, and 80%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!