A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Learning, Mining, and Collaborative Clustering to Identify Flexible Daily Activities Patterns. | LitMetric

The monitoring of the daily life activities routine is beneficial, especially in old age. It can provide relevant information on the person's health state and wellbeing and can help identify deviations that signal care deterioration or incidents that require intervention. Existing approaches consider the daily routine as a rather strict sequence of activities which is not usually the case. In this paper, we propose a solution to identify flexible daily routines of older adults considering variations related to the order of activities and activities timespan. It combines the Gap-BIDE algorithm with a collaborative clustering technique. The Gap-BIDE algorithm is used to identify the most common patterns of behavior considering the elements of variations in activities sequence and the period of the day (i.e., night, morning, afternoon, and evening) for increased pattern mining flexibility. K-means and Hierarchical Clustering Agglomerative algorithms are collaboratively used to address the time-related elements of variability in daily routine like activities timespan vectors. A prototype was developed to monitor and detect the daily living activities based on smartwatch data using a deep learning architecture and the InceptionTime model, for which the highest accuracy was obtained. The results obtained are showing that the proposed solution can successfully identify the routines considering the aspects of flexibility such as activity sequences, optional and compulsory activities, timespan, and start and end time. The best results were obtained for the collaborative clustering solution that considers flexibility aspects in routine identification, providing coverage of monitored data of 89.63%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269491PMC
http://dx.doi.org/10.3390/s22134803DOI Listing

Publication Analysis

Top Keywords

collaborative clustering
12
activities timespan
12
activities
9
deep learning
8
identify flexible
8
flexible daily
8
daily routine
8
solution identify
8
gap-bide algorithm
8
daily
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!