A time-integration imaging polarimeter with continuous rotating retarder is presented, and its full-Stokes retrieving and configuration optimization are also demonstrated. The mathematical expression between the full-Stokes vector and the time-integration light intensities is derived. As a result, the state of polarization of incident light can be retrieved by only one matrix calculation. However, the modulation matrix deviates from the initial well-conditioned status due to time integration. Thus, we re-optimize the nominal angles for the special retardance of 132° and 90° with an exposure angle of 30°, which results in a reduction of 31.8% and 16.8% of condition numbers comparing to the original configuration, respectively. We also give global optimization results under different exposure angles and retardance of retarder; as a result, the 137.7° of retardance achieves a minimal condition number of 2.0, which indicates a well-conditioned polarimeter configuration. Besides, the frame-by-frame algorithm ensures the dynamic performance of the presented polarimeter. For a general brushless DC motor with a rotating speed of over 2000 rounds per minute, the speed of polarization imaging will achieve up to 270 frames per second. High precision and excellent dynamic performance, together with features of compactness, simplicity, and low cost, may give this traditional imaging polarimeter new life and attractive prospects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268785 | PMC |
http://dx.doi.org/10.3390/s22134733 | DOI Listing |
Sensors (Basel)
January 2025
Department of Computer-Integrated Technologies of Device Production, Faculty of Instrumentation Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Ave., 37, 03056 Kyiv, Ukraine.
This study presents a method for aligning the geometric parameters of images in multi-channel imaging systems based on the application of pre-processing methods, machine learning algorithms, and a calibration setup using an array of orderly markers at the nodes of an imaginary grid. According to the proposed method, one channel of the system is used as a reference. The images from the calibration setup in each channel determine the coordinates of the markers, and the displacements of the marker centers in the system's channels relative to the coordinates of the centers in the reference channel are then determined.
View Article and Find Full Text PDFArXiv
December 2024
Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands.
Three-Dimensional Polarized Light Imaging (3D-PLI) and Computational Scattered Light Imaging (ComSLI) map dense nerve fibers in brain sections with micrometer resolution using visible light. 3D-PLI reconstructs single fiber orientations, while ComSLI captures multiple directions per pixel, offering deep insights into brain tissue structure. Here, we introduce the Scattering Polarimeter, a high-speed correlative microscope to leverage the strengths of both methods.
View Article and Find Full Text PDFNano Lett
October 2024
National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P.R. China.
Adv Mater
September 2024
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
Miniaturized polarimetric photodetectors based on anisotropic two-dimensional materials attract potential applications in ultra-compact polarimeters. However, these photodetectors are hindered by the small polarization ratio values and complicated artificial structures. Here, a novel polarization photodetector based on in-sublattice carrier transition in the CdSbSeBr/WSe heterostructure, with a giant and reconfigurable PR value, is demonstrated.
View Article and Find Full Text PDFJ Am Chem Soc
July 2024
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Chiral three-dimensional (3D) perovskites exhibit exceptional optoelectronic characteristics and inherent chiroptical activity, which may overcome the limitations of low-dimensional chiral optoelectronic devices and achieve superior performance. The integrated chip of high-performance arbitrary polarized light detection is one of the aims of chiral optoelectronic devices and may be achieved by chiral 3D perovskites. Herein, we first fabricate the wafer-scale integrated full-Stokes polarimeter by the synergy of unprecedented chiral 3D perovskites (/-PyEA)PbBr and one-step capillary-bridge assembly technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!