Accuracy and Precision of Wearable Devices for Real-Time Monitoring of Swimming Athletes.

Sensors (Basel)

Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.

Published: June 2022

Nowadays, the use of wearable devices is spreading in different fields of application, such as healthcare, digital health, and sports monitoring. In sport applications, the present trend is to continuously monitor the athletes' physiological parameters during training or competitions to maximize performance and support coaches. This paper aims to evaluate the performances in heart rate assessment, in terms of accuracy and precision, of both wrist-worn and chest-strap commercial devices used during swimming activity, considering a test population of 10 expert swimmers. Three devices were employed: Polar H10 cardiac belt, Polar Vantage V2, and Garmin Venu Sq smartwatches. The former was used as a reference device to validate the data measured by the two smartwatches. Tests were performed both in dry and wet conditions, considering walking/running on a treadmill and different swimming styles in water, respectively. The measurement accuracy and precision were evaluated through standard methods, i.e., Bland-Altman plot, analysis of deviations, and Pearson's correlation coefficient. Results show that both precision and accuracy worsen during swimming activity (with an absolute increase of the measurement deviation in the range of 13-56 bpm for mean value and 49-52 bpm for standard deviation), proving how water and arms movement act as relevant interference inputs. Moreover, it was found that wearable performance decreases when activity intensity increases, highlighting the need for specific research for wearable applications in water, with a particular focus on swimming-related sports activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269005PMC
http://dx.doi.org/10.3390/s22134726DOI Listing

Publication Analysis

Top Keywords

accuracy precision
12
wearable devices
8
swimming activity
8
accuracy
4
wearable
4
precision wearable
4
devices
4
devices real-time
4
real-time monitoring
4
swimming
4

Similar Publications

Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.

View Article and Find Full Text PDF

Accurate classification of logos is a challenging task in image recognition due to variations in logo size, orientation, and background complexity. Deep learning models, such as VGG16, have demonstrated promising results in handling such tasks. However, their performance is highly dependent on optimal hyperparameter settings, whose fine-tuning is both labor-intensive and time-consuming.

View Article and Find Full Text PDF

Legume content (LC) in grass-legume mixtures is important for assessing forage quality and optimizing fertilizer application in meadow fields. This study focuses on differences in LC measurements obtained from unmanned aerial vehicle (UAV) images and ground surveys based on dry matter assessments in seven meadow fields in Hokkaido, Japan. We propose a UAV-based LC (LC) estimation and mapping method using a land cover map from a simple linear iterative clustering (SLIC) algorithm and a random forest (RF) classifier.

View Article and Find Full Text PDF

Warfarin is the most widely used oral anticoagulant in clinical practice. The cytochrome P450 2C9 (CYP2C9), vitamin K epoxide reductase complex 1 (VKORC1), and cytochrome P450 4F2 (CYP4F2) genotypes are associated with warfarin dose requirements in China. Accurate genotyping is vital for obtaining reliable genotype-guided warfarin dosing information.

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!