Halophyte plants are known for their resistance to harsh environmental conditions associated with excess salts in their habitats. Their resistance to salinization is due, among other things, to their high ability to detoxify free radicals, owing to the relatively high content of antioxidants. On the coast of the Baltic Sea and in the lagoons, there are several rare halophyte species included in the Red Book of the Kaliningrad Region (Russia) and the Baltic region, such as (L.) Griseb. and L. The aim of the research was to study the accumulation of certain groups of phenolic compounds in different parts of and plants under conditions of weak and strong soil salinity, as well as to analyze the antioxidant, antibacterial, and fungicidal activity of extracts of the studied plant species. The present study showed an increase in total phenolic content in the roots and shoots of and the shoots of in response to increased soil salinity. At the same time, the total content of flavonoids in all the studied parts of the two plant species remained unchanged. However, the content of individual flavonoids (hesperetin, epicatechin, apigenin derivative, luteolin derivative) in increased, for there was a tendency to reduce the content of flavonoids in roots and shoots with an increase in soil salinity. There was an increase in the total content of hydroxycinnamic acids in the roots of , as well as an increase in the content of protocatechuic acid in the roots and shoots of . A positive relationship was established between the antioxidant activity of root extracts and the total content of phenolic compounds, as well as shoots extracts and the total content of phenolic compounds. Extracts of showed no antibacterial activity against and , and weak fungicidal activity of stem extracts and inflorescences grown on soils, with high levels of salinities, was detected against . The extracts of roots and shoots from showed weak antimicrobial and fungicidal activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269476PMC
http://dx.doi.org/10.3390/plants11131738DOI Listing

Publication Analysis

Top Keywords

phenolic compounds
16
roots shoots
16
total content
16
soil salinity
12
fungicidal activity
12
content
10
groups phenolic
8
activity extracts
8
plant species
8
increase total
8

Similar Publications

Protocatechuic aldehyde sensitizes BRAF-mutant melanoma cells to temozolomide through inducing FANCD2 degradation.

Med Oncol

January 2025

Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.

Temozolomide (TMZ)-based chemotherapy is a primary regimen for melanoma patients who have failed targeted therapy or immunotherapy. However, the low response rate of TMZ-based chemotherapy challenges the patients' prognosis. BRAF mutation is the most frequently mutated site in melanoma.

View Article and Find Full Text PDF

Chemoprevention is one of the accessible strategies for preventing, delaying or reversing cancer processing utilizing chemical intervention of carcinogenesis. NAD(P)H quinone oxidoreductase 1 (NQO1) is a xenobiotic metabolizing cytosolic enzyme/protein with important functional properties towards oxidation stress, supporting its ability in detoxification/chemoprotective role. A set of 3,5-diylidene-4-piperidones (as curcumin mimics) bearing alkyl sulfonyl group were synthesized with potential NQO1 induction properties.

View Article and Find Full Text PDF

This study determined the anthocyanin and phenolic profile of Syzygium cumini bioactive compounds, including anthocyanins and other flavonoids, alongside diverse phenolic compounds. The study optimized a green extraction technique (ultrasound-assisted enzymatic extraction (UAEE)) to obtain anthocyanin-rich extract from the fruit pulp of S. cumini using the pectinase enzyme.

View Article and Find Full Text PDF

Key odorants of juices of pomegranate fruits of Hicaz variety obtained from different juice production stages (fresh: FrPJ, pasteurized: PPJ, filtered: FiPJ, and concentrated: CPJ) were examined. Processing significantly impacted the volatile compounds. The FrPJ and PPJ samples had higher concentrations of aroma compounds than the FiPJ and CPJ samples.

View Article and Find Full Text PDF

This study evaluated the effects of malic acid vacuum microwave preconditioning (MVMP) on lotus root (LR) by examining its moisture content, dielectric properties, microstructure, and starch characteristics, including modifications in starch structure and composition. Dielectric properties and LF-NMR indicated that the dielectric constant (ε') was closely associated to moisture content and state, while changes in water migration depended on microwave power and the dielectric loss factor (ε″). Increased microwave power and malic acid concentration resulted in microstructural damage (indentation and breakage of starch granules) and starch hydrolysis into smaller particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!