In Mediterranean areas, extreme weather conditions such as high diurnal temperatures during the growing season could tweak vine physiology and metabolism, affecting grapes' quality. Moreover, uncertainty in spatial and temporal distribution precipitation is an issue for the water resources of the vineyards, forcing the winemakers to continuously face an increasing water demand in recent decades, which has led them to non-sustainable choices for ambient (i.e., irrigation solutions). The aspiration of this experiment was to explore the effects of zeolite treatments (clinoptilolite type) on L. (potted vines) ecophysiology and berry metabolism under two water regimes. The plants were subordinated to two different predawn water potential regimes (0 ≤ ΨPD ≤ -0.4, WWCtrl and -0.4 ≤ ΨPD ≤ -0.9, WSCtrl), both associated with zeolite treatments (WWt and WSt). Gas exchanges, predawn and midday stem water potential, chlorophyll fluorescence, temperature, and relative water content were overseen on leaves at veraison, maturation, and harvest. Technological analyses were performed on the berries. Moreover, data were analyzed with principal component analysis and Pearson's correlations. This experiment supplies new evidence that zeolite applications could impact both physiological profiles (higher photosynthesis and stomatal conductance) as well as berry skin metabolism (sugar and size) of vines, giving a better skill to counteract low water availability during the season and maintaining a better hydraulic conductivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9268851PMC
http://dx.doi.org/10.3390/plants11131735DOI Listing

Publication Analysis

Top Keywords

zeolite treatments
12
water potential
8
≤ Ψpd
8
Ψpd ≤
8
water
7
leaf eco-physiological
4
eco-physiological profile
4
profile berries
4
berries technological
4
technological traits
4

Similar Publications

Zwitterionic Poly(ethylene glycol) Nanoparticles Minimize Protein Adsorption and Immunogenicity for Improved Biological Fate.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

We report the assembly of poly(ethylene glycol) nanoparticles (PEG NPs) and optimize their surface chemistry to minimize the formation of protein coronas and immunogenicity for improved biodistribution. PEG NPs cross-linked with disulfide bonds are synthesized utilizing zeolitic imidazolate framework-8 NPs as the templates, which are subsequently modified with PEG molecules with different end groups (carboxyl, methoxy, or amino) to vary the surface chemistry. Among the modifications, the amino and residual carboxyl groups form a pair of zwitterionic structures on the surface of PEG NPs, which minimize the adsorption of proteins (e.

View Article and Find Full Text PDF

The -doped biochar is recognized as a promising, cost-effective, and efficient material for CO adsorption. However, achieving efficient enrichment of -containing adsorption sites and improving their accessibility remains a bottleneck problem that restricts the adsorption performance of -doped biochar. Herein, a synthesis strategy for nitrogen-doped biochar by one-pot ionothermal treatment of biomass and zeolitic imidazolate framework (ZIF) precursors accompanied by pyrolysis is demonstrated.

View Article and Find Full Text PDF

Impact of carrier capacitance on Geobacter enrichment and direct interspecies electron transfer under anaerobic conditions.

Bioresour Technol

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 China. Electronic address:

Direct interspecies electron transfer (DIET) enhances anaerobic digestion by facilitating electron exchange between electroactive bacteria and methanogenic archaea. While Geobacter species are recognized for donating electrons to methanogens via DIET, they are rarely detected in mixed microbial communities. This study examined various non-electrode biological carriers (zeolite, carbon cloth, activated carbon and biochar) to promote Geobacter cultivation under anaerobic conditions and identify pivotal factors influencing their symbiosis with methanogens.

View Article and Find Full Text PDF

MOF-derived intelligent arenobufagin nanocomposites with glucose metabolism inhibition for enhanced bioenergetic therapy and integrated photothermal-chemodynamic-chemotherapy.

J Nanobiotechnology

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.

Bioenergetic therapy based on tumor glucose metabolism is emerging as a promising therapeutic modality. To overcome the poor bioavailability and toxicity of arenobufagin (ArBu), a MOF-derived intelligent nanosystem, ZIAMH, was designed to facilitate energy deprivation by simultaneous interventions of glycolysis, OXPHOS and TCA cycle. Herein, zeolitic imidazolate framework-8 was loaded with ArBu and indocyanine green, encapsulated within metal-phenolic networks for chemodynamic therapy and hyaluronic acid modification for tumor targeting.

View Article and Find Full Text PDF

The pervasive presence of toluene in aquatic environments, primarily due to oil spills and industrial effluents, necessitates the development of effective and sustainable remediation strategies. This study introduces ZIF-8@DES-treated loofah sponge (ZIF-8@DLS), a novel adsorbent composite material, synthesized via an in situ process that integrates the high surface area of ZIF-8 with the natural loofah sponge. The composite was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), confirming the successful loading of ZIF-8 onto the loofah substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!