Multiobjective Optimization of Composite Wind Turbine Blade.

Materials (Basel)

Department of Theoretical and Applied Mechanics, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland.

Published: July 2022

When designing a wind turbine, the main objective is to generate maximum effective power with the lowest possible production costs. The power of a wind turbine depends primarily on the aerodynamic properties of its blades. Moreover, the cost of making a blade for a wind turbine, and therefore also for the entire wind turbine, depends on the materials used for its production. Therefore, wind turbine blades are the most studied element of a wind turbine. By selecting the optimal material and geometric properties of the wind turbine blade, it is possible to reduce the costs of making the entire wind turbine. These rationales led the authors to investigate composite wind turbine blades. A two-criteria optimization task was formulated, which allowed for the simultaneous consideration of two criteria: minimizing the mass and minimizing the vertical deflection of the wind turbine blade. Geometric properties of the blade, influencing the considered criteria, were assumed as decision variables. The weighted sum method was used. The results obtained allowed us to determine the optimal geometric and material properties of a wind turbine blade.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267708PMC
http://dx.doi.org/10.3390/ma15134649DOI Listing

Publication Analysis

Top Keywords

wind turbine
48
turbine blade
16
wind
12
turbine
12
composite wind
8
turbine depends
8
entire wind
8
turbine blades
8
geometric properties
8
properties wind
8

Similar Publications

A signal-processing algorithm for the detailed determination of delamination in multilayer structures is proposed in this work. The algorithm is based on calculating the phase velocity of the Lamb wave A mode and estimating this velocity dispersion. Both simulation and experimental studies were conducted to validate the proposed technique.

View Article and Find Full Text PDF

Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.

View Article and Find Full Text PDF

The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion-a process of resin injection and curing in carbon fibers-is prone to initial defects, such as pores, wrinkles, and delamination. This study suggests employing the pultrusion technique for spar production to consistently obtain a uniform cross-section and augment the reliability of both the manufacturing process and the design.

View Article and Find Full Text PDF

In recent decades, Offshore Wind Turbines (OWTs) have become crucial to the clean energy transition, yet they face significant safety challenges due to harsh marine conditions. Key issues include blade damage, material corrosion, and structural degradation, necessitating advanced materials and real-time monitoring systems for enhanced reliability. Carbon fiber has emerged as a preferred material for turbine blades due to its strength-to-weight ratio, although its high cost remains a barrier.

View Article and Find Full Text PDF

Recovery of rare earths from end-of-life NdFeB permanent magnets from wind turbines.

ChemSusChem

January 2025

Spanish Scientific Research Council: Consejo Superior de Investigaciones Cientificas, Metalurgia Primaria y Reciclado de Materiales, SPAIN.

This work aims to recover rare earths from wind turbines NdFeB magnets through pyrometallurgical and hydrometallurgical techniques. First, a NdFeB hydride powder is obtained by decrepitation with hydrogen. Subsequently, this powder was subjected to a chlorination roasting process and successive leaching with water to bring the metals into solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!