When designing a wind turbine, the main objective is to generate maximum effective power with the lowest possible production costs. The power of a wind turbine depends primarily on the aerodynamic properties of its blades. Moreover, the cost of making a blade for a wind turbine, and therefore also for the entire wind turbine, depends on the materials used for its production. Therefore, wind turbine blades are the most studied element of a wind turbine. By selecting the optimal material and geometric properties of the wind turbine blade, it is possible to reduce the costs of making the entire wind turbine. These rationales led the authors to investigate composite wind turbine blades. A two-criteria optimization task was formulated, which allowed for the simultaneous consideration of two criteria: minimizing the mass and minimizing the vertical deflection of the wind turbine blade. Geometric properties of the blade, influencing the considered criteria, were assumed as decision variables. The weighted sum method was used. The results obtained allowed us to determine the optimal geometric and material properties of a wind turbine blade.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267708 | PMC |
http://dx.doi.org/10.3390/ma15134649 | DOI Listing |
Sensors (Basel)
January 2025
Ultrasound Research Institute, Kaunas University of Technology, LT-51423 Kaunas, Lithuania.
A signal-processing algorithm for the detailed determination of delamination in multilayer structures is proposed in this work. The algorithm is based on calculating the phase velocity of the Lamb wave A mode and estimating this velocity dispersion. Both simulation and experimental studies were conducted to validate the proposed technique.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland.
Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering, Kunsan National University, Gunsan-si 54150, Republic of Korea.
The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion-a process of resin injection and curing in carbon fibers-is prone to initial defects, such as pores, wrinkles, and delamination. This study suggests employing the pultrusion technique for spar production to consistently obtain a uniform cross-section and augment the reliability of both the manufacturing process and the design.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Hainan Institute, Zhejiang University, Sanya 572024, China.
In recent decades, Offshore Wind Turbines (OWTs) have become crucial to the clean energy transition, yet they face significant safety challenges due to harsh marine conditions. Key issues include blade damage, material corrosion, and structural degradation, necessitating advanced materials and real-time monitoring systems for enhanced reliability. Carbon fiber has emerged as a preferred material for turbine blades due to its strength-to-weight ratio, although its high cost remains a barrier.
View Article and Find Full Text PDFChemSusChem
January 2025
Spanish Scientific Research Council: Consejo Superior de Investigaciones Cientificas, Metalurgia Primaria y Reciclado de Materiales, SPAIN.
This work aims to recover rare earths from wind turbines NdFeB magnets through pyrometallurgical and hydrometallurgical techniques. First, a NdFeB hydride powder is obtained by decrepitation with hydrogen. Subsequently, this powder was subjected to a chlorination roasting process and successive leaching with water to bring the metals into solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!